Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4160results about "Unmanned aerial vehicles" patented technology

Method and system for drone deliveries to vehicles in route

A system comprise a server configured to communicate vehicle information with a vehicle transceiver of a vehicle moving along a vehicle route and communicate drone information with a drone transceiver of a drone moving along a drone route. A computing device with a memory and a processor may be configured to communicatively connect with the server, process the vehicle information and the drone information, identify a plurality of pickup locations based in part on the vehicle information and drone information, select at least one of the plurality of pickup locations based in part on a priority score associated with a travel time to or wait time for each of the plurality of pickup locations, and update the drone route based in part on the selected pickup location.
Owner:VERIZON PATENT & LICENSING INC

Unmanned aerial vehicle base station

A method and apparatus comprising a platform, a battery system, a power generation system, a number of charging stations, and a controller. The platform is configured to house a number of unmanned aerial vehicles. The power generation system is connected to the battery system. The power generation system is configured to generate electrical energy from an environment in which the platform is located, and store the electrical energy in the battery system. The number of charging stations is connected to the battery system. The controller is connected to the battery system and is configured to receive sensor data from the number of unmanned aerial vehicles, generate information from the sensor data, and send the information to a remote location.
Owner:THE BOEING CO

Tethered aerial system for data gathering

InactiveUS20130233964A1Increase horizontal rangeExtending flight spaceTethered aircraftActuated automaticallyLevel flightFlight vehicle
A tethered unmanned aerial vehicle (“UAV”) may be outfitted with a sensor payload for data gathering. The tethered UAV may be tethered to a ground station for constricting the flight space of the UAV while also providing the option for power delivery and / or bidirectional communications. The tethered UAV's flight path may be extended by introducing one or more secondary UAVs that cooperate to extend the horizontal flight path of a primary UAV. The ground station, which may be coupled with the tethered aerial vehicle, may comprise a listening switch configured to determine a condition of the tether such that the supply of power to the tether may be terminated when tether damage or a tether severance is detected.
Owner:AURORA FLIGHT SCI CORP

Helicopter with multi-rotors and wireless capability

The present invention relates to a helicopter having a modular airframe, with multiple layers which can be connected easily, the layers which house the electronics (autopilot and navigation systems), batteries, and payload (including camera system) of the helicopter. The helicopter has four, six, and eight rotors, which can be easily changed via removing one module of the airframe. In one embodiment, the airframe has a vertical stacked appearance, and in another embodiment, a domed shape (where several of the layers are stacked internally). In one embodiment, there is a combination landing gear and camera mount. The helicopter allows for simple flight and usage by remote control, and non-remote control, users.
Owner:GEOTECH ENVIRONMENTAL EQUIP

Authentication systems and methods for generating flight regulations

Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and / or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Owner:SZ DJI TECH CO LTD

Autonomous Payload Parsing Management System and Structure for an Unmanned Aerial Vehicle

An unmanned aerial vehicle (UAV) for making partial deliveries of cargo provisions includes a UAV having one or more ducted fans and a structural interconnect connecting the one or more fans to a cargo pod. The cargo pod has an outer aerodynamic shell and one or more internal drive systems for modifying a relative position of one or more cargo provisions contained within the cargo pod. Control logic is configured to, after delivery of a partial portion of the cargo provisions contained within the cargo pod, vary a position of at least a portion of the remaining cargo provisions to maintain a substantially same center of gravity of the UAV relative to a center of gravity prior to delivery of the partial portion. Other center of gravity compensation mechanisms may also be controlled by the control logic to aid in maintaining the center of gravity of the UAV.
Owner:HONEYWELL INT INC

Unmanned aerial vehicle management

A base module may be used to receive and house one or more unmanned aerial vehicles (UAVs) via one or more cavities. The base module receives commands from a manager device and identifies a flight plan that allows a UAV to execute the received commands. The base module transfers the flight plan to the UAV and frees the UAV. Once the UAV returns, the base module once again receives it. The base module then receives sensor data from the UAV from one or more sensors onboard the UAV, and optionally receives additional information describing its flight and identifying success or failure of the flight plan. The base module transmits the sensor data and optionally the additional information to a storage medium locally or remotely accessible by the manager device.
Owner:IMAGEKEEPER LLC

Power line sentry charging

A rechargeable battery energized unmanned aerial vehicle having surveillance capability and an ability to clandestinely collect propulsion and other energy needs from a conveniently located and possibly enemy owned energy transmission line. Energy collection is by way of a parked vehicle engagement with the transmission line in a current flow dependent, magnetic field determined, rather than shunt, voltage dependent, conductor coupling. Surveillance during both a parked or docked condition and during aerial vehicle movement is contemplated.
Owner:US SEC THE AIR FORCE THE

Battery charging arrangement for unmanned aerial vehicle utilizing the electromagnetic field associated with utility power lines to generate power to inductively charge energy supplies

A method and apparatus for charging energy supplies in an unmanned aerial vehicle (UAV). The present invention relates to a UAV that comprises an inductive charging device that utilizes the electromagnetic field emanated by overhead / utility power lines, to charge the energy supplies. The UAV also includes a releasable latch for holding power lines to allow for the perching of the UAV on power lines during the charging process. The latch and the inductive charging device may be provided on a single device, a battery augmentation trap (BAT). The UAV may be perched in an upright orientation to allow for takeoff after the charging of energy supplies on the power line.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

System and method for controlling drone delivery or pick up during a delivery or pick up phase of drone operation

A system including a landing location where a drone at least one of delivers and acquires a parcel, and a homing device to interact with the drone to guide the drone to the landing location independent of interaction from another source. The homing device guides the drone during the landing phase of a flight plan. A method is also disclosed.
Owner:FARRIS EMMETT +1

System and method of aerial surveillance

A system and method for an aerial surveillance system are disclosed. Briefly described, one embodiment comprises a lighter-than-air aerial platform, at least one image capture device carried by the lighter-than-air aerial platform and operable to sequentially capture a plurality of images, and at least one control surface physically coupled to the lighter-than-air aerial platform and operable to control direction of movement of the lighter-than-air aerial platform along a surveillance path in response to a guidance control signal determined in part upon the sequentially captured plurality of images.
Owner:ROBOTICVISIONTECH

Unmanned aerial vehicle for antenna radiation characterization

The unmanned aerial vehicle for antenna radiation characterization is an unmanned aerial vehicle having a propulsion system and a transceiver. Control signals are transmitted from a base station to position the unmanned aerial vehicle adjacent an antenna of interest. The unmanned aerial vehicle for antenna radiation characterization further includes a signal strength antenna for receiving an antenna signal generated by the antenna of interest for calculating or determining the received signal strength of the antenna signal. A received signal strength signal is then transmitted back to the base station, in real time. The received signal strength signal is representative of a set of received signal strengths of the antenna signal corresponding to a set of three-dimensional measurement coordinates such that the received signal strength signal represents a three-dimensional radiation pattern associated with the antenna of interest.
Owner:KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

Aerial system and vehicle for continuous operation

An aerial vehicle system for gathering data may comprise a Waypoint Location, wherein the Waypoint Location comprises an arresting cable; a Ground Control Station, wherein the Ground Control Station comprises a charging cable; and an aerial vehicle, wherein the aerial vehicle comprises an onboard battery, a capturing hook and a sensor payload for generating surveillance data. The aerial vehicle may be configured to autonomously travel between the Waypoint Location and the Ground Control Station. The aerial vehicle may be configured to couple with the arresting cable via the capturing hook. The aerial vehicle may be configured to electronically couple with the charging cable via the capturing hook to facilitate charging the aerial vehicle's onboard battery.
Owner:AURORA FLIGHT SCI CORP

Unmanned aerial vehicle apparatus, system and method for retrieving data

The present invention relates to a system for retrieving data from remote difficult to reach terrain, such as wilderness areas, etc. and in particular to a system comprised of one or more surface based data collectors in communication with one or more wireless transceivers adapted to transmit the collected data to an unmanned aerial vehicle adapted to fly within a predetermined distance from the data collector and receive data collected therefrom. The present invention further relates to an unmanned aerial vehicle adapted to fly a flight pattern relative to a moveable surface object or for controlling the position of a moveable surface object relative to the flight path of the unmanned aerial vehicle. Finally, the present invention relates to an improved unmanned aerial vehicle having airframe structural elements with electrical circuits adhered to the surfaces of the structural elements.
Owner:FRINK BENTLEY D

Landing Pad For Unmanned Aerial Vehicle Delivery

A landing pad receives and stores packages delivered from an aerial vehicle are awaiting pickup from an aerial vehicle. The landing pad can be placed outside of a window and can contain a transmitter for sending out an identification signal via radio frequency to aid aerial vehicles in finding the landing pad. The landing pad contains a landing platform with a trapdoor that leads to a storage compartment. The trapdoor can be configured to only open when it receives a signal from an authorized aerial vehicle. The storage compartment can be accessed via a storage compartment door which can contain a locking mechanism. The storage compartment can be climate controlled. The landing pad can also have a transmitter that emits sounds to discourage animals from nesting on or near the landing pad. The landing pad can also include a solar power generator as a source of electrical energy.
Owner:BLACKNIGHT HLDG

System and method for controlling unmanned aerial vehicles

A system is provided comprising a control station for remotely controlling unmanned aerial vehicles (“UAV”). The control station is configured to display vehicle status data received from each UAV, including displaying a location of each UAV in a single interface. Through the single interface, the control station may receive a control command input associated with one of the UAVs. The control station may transmit the received control command, or a command derived therefrom, to the respective UAV. The single interface may provide for a user to view and control flight operation of each of the UAVs independently through the single interface.
Owner:AERYON LABS

Novel tracking system using unmanned aerial vehicles

The present disclosure relates to systems and methods of tracking persons and objects and capturing video, still images and other data in real time of the same. The present disclosure includes an unmanned aerial vehicle (e.g., UAV) which follows a trackable system coupled to an object or on individual's person. The UAV may have a camera component which may record video, still images and other data (position, speed, acceleration, cadence, etc.) of the trackable system and items in close proximity thereto. Advantageously, the UAV may transmit video feeds and still images to a monitoring station or device such that security personnel and other persons of interest can respond timely to unplanned incidents and emergencies. In one or more implementations, a network of UAVs may fly alongside each other to capture video of multiple targets without causing collisions.
Owner:WILLENBORG JIM

Systems and methods for UAV battery exchange

Systems and methods are provided for swapping the battery on an unmanned aerial vehicle (UAV). The UAV may be able to identify and land on an energy provision station autonomously. The UAV may take off and / or land on the energy provision station. The UAV may communicate with the energy provision station. The energy provision station may store and charge batteries for use on a UAV.
Owner:SZ DJI TECH CO LTD

Package delivery by means of an automated multi-copter uas/uav dispatched from a conventional delivery vehicle

Methods and associated systems for autonomous package delivery utilize a UAS / UAV, an infrared positioning senor, and a docking station integrated with a package delivery vehicle. The UAS / UAV accepts a package for delivery from the docking station on the delivery vehicle and uploads the delivery destination. The UAS / UAV autonomously launches from its docked position on the delivery vehicle. The UAS / UAV autonomously flies to the delivery destination by means of GPS navigation. The UAS / UAV is guided in final delivery by means of a human supervised live video feed from the UAS / UAV. The UAS / UAV is assisted in the descent and delivery of the parcel by precision sensors and if necessary by means of remote human control. The UAS / UAV autonomously returns to the delivery vehicle by means of GPS navigation and precision sensors. The UAS / UAV autonomously docks with the delivery vehicle for recharging and preparation for the next delivery sequence.
Owner:WORKHORSE GRP INC

Quad tilt rotor aerial vehicle with stoppable rotors

InactiveUS20110001020A1Eliminate needIncrease vehicle aerodynamic efficiencyUnmanned aerial vehiclesRemote controlled aircraftFlight vehicleFuselage
The disclosed invention consists of several improvements to well known Quad Tilt-Rotor (QTR) aircraft. The first is that during a wing-borne flight, one pair of tilt-rotors, which can be substantially larger than the other pair, is feathered and stopped. This can promote vehicle aerodynamic efficiency and can be utilized to increase vehicle speed. Second is that the wings are not attached to the fuselage at a fixed angle of incidence like on conventional QTR aircraft, but can also be tilted in respect to the fuselage independently of the tilt-rotors. Furthermore, each rotor and each wing can be tilted with respect to fuselage to any tilt-angle without limit, which gives the vehicle unprecedented ability to position the fuselage in any attitude in respect to the vehicle direction of flight.
Owner:FORGAC PAVOL

Methods and systems for transportation using unmanned aerial vehicles

InactiveUS20170129603A1Facilitating payload transportationUnmanned aerial vehiclesFreight handling installationsPropellerUnmanned air vehicle
An unmanned aerial vehicle (UAV) for transporting a payload is provided. The UAV comprises a body and one or more propellers rotatably connected to the body. The UAV further comprises a battery mounted to the body. The battery is releasable from the bottom of the UAV. The UAV further comprises a payload container mounted to the body. The payload container is releasable from the bottom of the UAV to a landing platform associated with a UAV station.
Owner:MATTERNET INC

Parallel Hybrid-Electric Propulsion Systems for Unmanned Aircraft

An unmanned air vehicle is provided, which includes an airframe and a parallel hybrid-electric propulsion system mounted on the airframe. The parallel hybrid-electric propulsion system includes an internal combustion engine and an electric motor. A hybrid controller is configured to control both the internal combustion engine and the electric motor. A propeller is connected to a mechanical link. The mechanical link couples the internal combustion engine and the electric motor to the propeller to drive the propeller. An alternate unmanned air vehicle includes a second propeller driven by the electric motor. In this alternate unmanned air vehicle, the internal combustion engine is decoupled from the electric motor.
Owner:GOVERNMENT OF THE UNITED STATES AS REPRESENTD BY THE SEC OF THE AIR FORCE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products