Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5257results about "Autonomous decision making process" patented technology

Method and system for controlling a remote vehicle

A system for controlling more than one remote vehicle. The system comprises an operator control unit allowing an operator to receive information from the remote vehicles and send commands to the remote vehicles via a touch-screen interface, the remote vehicles being capable of performing autonomous behaviors using information received from at least one sensor on each remote vehicle. The operator control unit sends commands to the remote vehicles to perform autonomous behaviors in a cooperative effort, such that high-level mission commands entered by the operator cause the remote vehicles to perform more than one autonomous behavior sequentially or concurrently. The system may perform a method for generating obstacle detection information from image data received from one of a time-of-flight sensor and a stereo vision camera sensor.
Owner:IROBOT CORP

System and method for piece-picking or put-away with a mobile manipulation robot

A method and system for piece-picking or piece put-away within a logistics facility. The system includes a central server and at least one mobile manipulation robot. The central server is configured to communicate with the robots to send and receive piece-picking data which includes a unique identification for each piece to be picked, a location within the logistics facility of the pieces to be picked, and a route for the robot to take within the logistics facility. The robots can then autonomously navigate and position themselves within the logistics facility by recognition of landmarks by at least one of a plurality of sensors. The sensors also provide signals related to detection, identification, and location of a piece to be picked or put-away, and processors on the robots analyze the sensor information to generate movements of a unique articulated arm and end effector on the robot to pick or put-away the piece.
Owner:IAM ROBOTICS

Helicopter with multi-rotors and wireless capability

The present invention relates to a helicopter having a modular airframe, with multiple layers which can be connected easily, the layers which house the electronics (autopilot and navigation systems), batteries, and payload (including camera system) of the helicopter. The helicopter has four, six, and eight rotors, which can be easily changed via removing one module of the airframe. In one embodiment, the airframe has a vertical stacked appearance, and in another embodiment, a domed shape (where several of the layers are stacked internally). In one embodiment, there is a combination landing gear and camera mount. The helicopter allows for simple flight and usage by remote control, and non-remote control, users.
Owner:GEOTECH ENVIRONMENTAL EQUIP

System and method for controlling drone delivery or pick up during a delivery or pick up phase of drone operation

A system including a landing location where a drone at least one of delivers and acquires a parcel, and a homing device to interact with the drone to guide the drone to the landing location independent of interaction from another source. The homing device guides the drone during the landing phase of a flight plan. A method is also disclosed.
Owner:FARRIS EMMETT +1

Collaborative engagement for target identification and tracking

A collaborative engagement system comprises: at least two unmanned vehicles comprising an unmanned air vehicle including sensors configured to locate a target and an unmanned ground vehicle including sensors configured to locate and track a target; and a controller facilitating control of, and communication and exchange of data to and among the unmanned vehicles, the controller facilitating data exchange via a common protocol. The collaborative engagement system controls the unmanned vehicles to maintain line-of-sight between a predetermined target and at least one of the unmanned vehicles.
Owner:AEROVIRONMENT INC +2

System and method for behavior based control of an autonomous vehicle

System and method for behavior based control of an autonomous vehicle. Actuators (e.g., linkages) manipulate input devices (e.g., articulation controls and drive controls, such as a throttle lever, steering gear, tie rods, throttle, brake, accelerator, or transmission shifter) to direct the operation of the vehicle. Behaviors that characterize the operational mode of the vehicle are associated with the actuators. The behaviors include action sets ranked by priority, and the action sets include alternative actions that the vehicle can take to accomplish its task. The alternative actions are ranked by preference, and an arbiter selects the action to be performed and, optionally, modified.
Owner:IROBOT CORP

Robots, systems, and methods for hazard evaluation and visualization

A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.
Owner:HUMATICS CORP +1

Selecting vehicle type for providing transport

A transport arrangement system operates to receive a transport request from a user, and to make a selection of a vehicle type for the user based at least in part on a set of criteria associated with the transport request or user information. For example, the determination of whether an autonomous vehicle is to be provided can be based at least in part on the destination specified with the transport request.
Owner:UATC LLC

Method for establishing a desired area of confinement for an autonomous robot and autonomous robot implementing a control system for executing the same

A method of establishing an area of confinement and an autonomous robot for performing a task within the area of confinement. In one aspect, the invention can be a method of defining an area of confinement for an autonomous robot comprising: a) positioning the autonomous robot at a first location point P1, the autonomous robot comprising a location tracking unit, and recording the first location point P1 within a memory device; b) moving the autonomous robot from the first location point P1 to a plurality of location points P2-N and recording each of the plurality of location points P2-N within the memory device; and c) defining, with a central processing unit, a first closed-geometry comprising the first location point P1 and the plurality of location points P2-N as a perimeter of the area of confinement within the memory device.
Owner:FUTUREGEN TECH INC +1

System and method for seamless task-directed autonomy for robots

Systems, methods, and user interfaces are used for controlling a robot. An environment map and a robot designator are presented to a user. The user may place, move, and modify task designators on the environment map. The task designators indicate a position in the environment map and indicate a task for the robot to achieve. A control intermediary links task designators with robot instructions issued to the robot. The control intermediary analyzes a relative position between the task designators and the robot. The control intermediary uses the analysis to determine a task-oriented autonomy level for the robot and communicates target achievement information to the robot. The target achievement information may include instructions for directly guiding the robot if the autonomy level indicates low robot initiative and may include instructions for directing the robot to determine a robot plan for achieving the task if the autonomy level indicates high robot initiative.
Owner:BATTELLE ENERGY ALLIANCE LLC +1

Systems and methods for switching between autonomous and manual operation of a vehicle

Systems and methods for switching between autonomous and manual operation of a vehicle are described. In one embodiment, there is a mechanical control system that receives manual inputs from a mechanical operation member to operate the vehicle in manual mode. There is further an actuator that receives autonomous control signals generated by a controller. When the actuator is engaged, it operates the vehicle in an autonomous mode, and when disengaged, it operates the vehicle in manual mode. In another embodiment, there is an E-Stop system to disengage systems that cause the vehicle to move, such as the engine, while still leaving power in the systems that do not cause the vehicle to move. There is a method for autonomous mode starting of a vehicle, comprising receiving a signal indicating autonomous mode, determining that a parking brake lever is set and the brakes are engaged, disengaging the brakes while maintaining the lever in the set position, and engaging in autonomous mode. There is a safety system with a mechanical bias to suppress moveable systems of the vehicle, comprising a clutch that releases the mechanical bias to permit movement of the moveable system when the clutch is engaged. In another embodiment a system comprises a mechanical linkage with a restoration member that permits control of an operation system of the vehicle by a remote operation member when the restoration member is engaged. There is also an actuator that prohibits control of the operation system by the remote operation member when the actuator is engaged.
Owner:DEERE & CO +1

Networked multi-role robotic vehicle

An autonomous vehicle and systems having an interface for payloads that allows integration of various payloads with relative ease. There is a vehicle control system for controlling an autonomous vehicle, receiving data, and transmitting a control signal on at least one network. A payload is adapted to detachably connect to the autonomous vehicle, the payload comprising a network interface configured to receive the control signal from the vehicle control system over the at least one network. The vehicle control system may encapsulate payload data and transmit the payload data over the at least one network, including Ethernet or CAN networks. The payload may be a laser scanner, a radio, a chemical detection system, or a Global Positioning System unit. In certain embodiments, the payload is a camera mast unit, where the camera communicates with the autonomous vehicle control system to detect and avoid obstacles. The camera mast unit may be interchangeable, and may include structures for receiving additional payload components.
Owner:DEERE & CO +1

Autonomous Behaviors for a Remote Vehicle

A system for allowing an operator to switch between remote vehicle tele-operation and one or more remote vehicle autonomous behaviors. The system comprises: an operator control unit receiving input from the operator including instructions for the remote vehicle to execute an autonomous behavior; a control system on the remote vehicle for receiving the instruction to execute an autonomous behavior from the operator control unit; and a GPS receiver, an inertial measurement unit, and a navigation CPU on the remote vehicle. Upon receiving the instruction to execute an autonomous behavior, the remote vehicle executes that autonomous behavior using input from the GPS receiver, the inertial measurement unit (IMU), and the navigation CPU.
Owner:FLIR DETECTION

Accident fault determination for autonomous vehicles

ActiveUS9972054B1Operation moreFacilitate risk assessment and premium determinationAutonomous decision making processFinanceRisk levelThird party
Methods and systems for determining fault for an accident involving a vehicle having one or more autonomous and / or semi-autonomous operation features are provided. According to certain aspects, performance data indicative of the performance of the features may be used to determine fault for a vehicle accident, such as a collision, by allocating fault for the accident between a vehicle operator, the autonomous operation features, or a third party. The allocation of fault may be used to determine an adjustment to an insurance policy and / or adjust coverage levels for an insurance policy. The allocation of fault may further be used to adjust risk levels or profiles associated with the autonomous or semi-autonomous operation features, which may be applied to other vehicles having the same or similar features.
Owner:STATE FARM MUTUAL AUTOMOBILE INSURANCE

Method and system for automated transport of items

An automated distribution center includes an array with storage locations arranged along aisle(s) having a floor, and a mezzanine platform above the floor, the floor and mezzanine being configured for human picker access to the storage locations, an automated guided vehicle (AGV) configured for traverse of the floor and mezzanine to the storage locations, and for transporting a storage container to and from the storage locations, the floor and mezzanine each having an undeterministic traverse surface for the AGV, the AGV is configured so that the surface provides holonomic selectable paths for the AGV substantially everywhere on the surface, each path being selectable by the AGV, and an order filling station, where one or more goods are picked from container(s) to fill order(s), wherein the AGV is configured to pick the container from a storage location and transport the container on the surface between the storage array and the station.
Owner:NEXTSHIFT ROBOTICS INC

Vehicle occupant emergency system

A system may include a user interface, a transmitter, a processor, and a memory having a program communicatively connected to the processor. The processor may be configured to receive a body sensor output associated with an occupant of a vehicle, receive a vehicle sensor output associated with the vehicle, compare the body and vehicle sensor outputs with a threshold, prompt for a confirmation associated with at least one of the body and vehicle sensor outputs, determine an issue type based on at least one of the body and vehicle sensor outputs, and send a notification including the issue type.
Owner:VERIZON PATENT & LICENSING INC

Autonomous Driving Vehicle and Autonomous Driving System

In an autonomous driving system in which a plurality of autonomous driving vehicles drive under the control by occlusion control, such a situation is prevented that a vehicle is disabled to drive by a failure of an external world sensor for recognizing an obstacle and stops in an occlusion region thereby to obstruct advancement of overall succeeding vehicles to remarkably degrade the efficiency of the overall transportation work. In the autonomous driving system of the present invention, an autonomous driving vehicle which detects an obstacle or a driving road by a sensor and performs autonomous driving includes sensor state evaluation means configured to evaluate a state of performance degradation of the sensor, speed and steering angle control value setting means configured to provide limit values to the driving speed and the steering angle based on a state of performance degradation of the sensor, and movement obstacle evaluation means configured to evaluate an influence on movement of other vehicles when the vehicle stops at a position at present. When the sensor suffers from performance degradation, the vehicle stops after it drives within the set limit values to the speed and the steering angle to a point at which the vehicle does not obstruct movement of other vehicles.
Owner:HITACHI LTD

Systems and methods for obstacle avoidance

Embodiments of the invention provide systems and methods for obstacle avoidance. In some embodiments, a robotically controlled vehicle capable of operating in one or more modes may be provided. Examples of such modes include teleoperation, waypoint navigation, follow, and manual mode. The vehicle may include an obstacle detection and avoidance system capable of being implemented with one or more of the vehicle modes. A control system may be provided to operate and control the vehicle in the one or more modes. The control system may include a robotic control unit and a vehicle control unit.
Owner:IROBOT CORP +1

Methods and systems for collecting driving information and classifying drivers and self-driving systems

Systems and methods for efficiently addressing technical and privacy / authorization obstacles associated with tracking of individuals in a vehicle, and enabling route-based analysis to determine driving behavior, socio-demographics, future profitability, and interests of individuals or self-driving systems. Driving information is collected using a device associated with a driver and a vehicle or using data collected by systems of self-driving vehicles. The frequency and methods used for the collection of driving information can be modified based on location and movement of the device and based on previous classification of the driver or self-driving system, thereby enabling efficient use of bandwidth and battery and increasing accuracy of the classification. The driving information is encoded and transmitted to a server, where future typical route segments that the driver is likely to travel are predicted, and the driver, or the self-driving system, is classified into one or more groups based on the encoded driving information.
Owner:KHOURY JOSEPH

Integrated framework for vehicle operator assistance based on a trajectory and threat assessment

Various types and levels of operator assistance are performed within a unified, configurable framework. A model of the device with a model of the environment and the current state of the device and the environment are used to iteratively generate a sequence of optimal device control inputs that, when applied to a model of the device, generate an optimal device trajectory through a constraint-bounded corridor or region within the state space. This optimal trajectory and the sequence of device control inputs that generates it is used to generate a threat assessment metric. An appropriate type and level of operator assistance is generated based on this threat assessment. Operator assistance modes include warnings, decision support, operator feedback, vehicle stability control, and autonomous or semi-autonomous hazard avoidance. The responses generated by each assistance mode are mutually consistent because they are generated using the same optimal trajectory.
Owner:MASSACHUSETTS INST OF TECH

Autonomous behaviors for a remote vehicle

A method for enhancing operational efficiency of a remote vehicle using a diagnostic behavior. The method comprises inputting and analyzing data received from a plurality of sensors to determine the existence of deviations from normal operation of the remote vehicle, updating parameters in a reference mobility model based on deviations from normal operation, and revising strategies to achieve an operational goal of the remote vehicle to accommodate deviations from normal operation. An embedded simulation and training system for a remote vehicle. The system comprises a software architecture installed on the operator control unit and including software routines and drivers capable of carrying out mission simulations and training.
Owner:FLIR DETECTION

Behavior controlling apparatus, behavior control method, behavior control program and mobile robot apparatus

A behavior controlling apparatus by which the mobility area of a robot apparatus may be controlled in a simplified manner using plural landmarks. A landmark recognition unit 410 uniquely recognizes the landmarks to acquire the landmark position information rPo(x,y,z). A landmark map building unit 420 integrates the totality of the landmark position information rPo(x,y,z) sent by the landmark recognition unit 410 to build a landmark map which has integrated the geometric topology of the landmarks. Using the landmark map information rPoxN, a mobility area recognition unit 430 builds a mobility area map representing a mobility area for the robot. Using the mobility area map, sent from the mobility area recognition unit 430, a behavior controller 440 controls the autonomous behavior of the robot apparatus 1 so that the robot apparatus 1 will not come out of or into the mobility area.
Owner:SONY CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products