Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

35 results about "Hazard avoidance" patented technology

Hazard Avoidance. Movement is normal for many rivers. Predicting where the river will move is a primary goal of fluvial erosion hazard mitigation. Established relationships between the size of a river’s drainage area and how much a river may meander, or move, across the landscape, help to predict how much room a river needs to function naturally.

Autonomous Space Flight System and Planetary Lander for Executing a Discrete Landing Sequence to Remove Unknown Navigation Error, Perform Hazard Avoidance and Relocate the Lander and Method

An autonomous unmanned space flight system and planetary lander executes a discrete landing sequence including performing an initial velocity braking maneuver to remove velocity at altitude, coasting during which the planet surface is imaged and correlated to reference maps to estimate cross-track and along-track navigation errors and one or more lateral braking maneuvers are performed to reduce cross-track navigation error, and performing a terminal velocity braking maneuver(s) to reduce the along-track braking maneuver and remove the remainder of the velocity just prior to landing. A bi-propellant propulsion system provides a very high T / M ratio, at least 15:1 per nozzle. Short, high T / M divert maneuvers provide the capability to remove cross-track navigation error efficiently up to the maximum resolution of the reference maps. Short, high T / M terminal velocity braking maneuver(s) provide the capability to remove along-track navigation error to a similar resolution and remove the remaining velocity in a very short time window, approximately 3-15 seconds prior to touchdown. The propulsive efficiency frees up mass which can be allocated to a fuel to remove the unknown navigation errors, perform hazard avoidance and / or relocate the lander by flying it to another site or be allocated to additional payload.
Owner:RAYTHEON CO

Autonomous space flight system and planetary lander for executing a discrete landing sequence to remove unknown navigation error, perform hazard avoidance and relocate the lander and method

An autonomous unmanned space flight system and planetary lander executes a discrete landing sequence including performing an initial velocity braking maneuver to remove velocity at altitude, coasting during which the planet surface is imaged and correlated to reference maps to estimate cross-track and along-track navigation errors and one or more lateral braking maneuvers are performed to reduce cross-track navigation error, and performing a terminal velocity braking maneuver(s) to reduce the along-track braking maneuver and remove the remainder of the velocity just prior to landing. A bi-propellant propulsion system provides a very high T / M ratio, at least 15:1 per nozzle. Short, high T / M divert maneuvers provide the capability to remove cross-track navigation error efficiently up to the maximum resolution of the reference maps. Short, high T / M terminal velocity braking maneuver(s) provide the capability to remove along-track navigation error to a similar resolution and remove the remaining velocity in a very short time window, approximately 3-15 seconds prior to touchdown. The propulsive efficiency frees up mass which can be allocated to a fuel to remove the unknown navigation errors, perform hazard avoidance and / or relocate the lander by flying it to another site or be allocated to additional payload.
Owner:RAYTHEON CO

Method And Apparatus For Vulnerable Road User Incidence Avoidance

The present application generally relates communications and hazard avoidance within a monitored driving environment. More specifically, the application teaches a mechanism to monitor, identify and locating vulnerable road users in a hazard situation by receiving location and vector information from road users in an environment, determining the probability of a hazard situation arising in response to the location and vector information, and transmitting data to one or more road users in order to avoid the hazard situation.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method and apparatus crosstalk and multipath noise reduction in a lidar system

The present application generally relates communications and hazard avoidance within a monitored driving environment. More specifically, the application teaches a system for improved target object detection in a vehicle equipped with a laser detection and ranging LIDAR system by determining a plurality of ranges in response to a plurality of light pulse reflections and determining a false target indication by exploiting the expected continuity of surfaces in the environment.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method and apparatus for frame rate boosting in lidar array

The present application generally relates communications and hazard avoidance within a monitored driving environment. More specifically, the application teaches a system for improved target object detection in a vehicle equipped with a laser detection and ranging LIDAR system by simutaneously transmitting mutliple lasers in an array in response to a previously determined reception time, such that detection of light pulses from each laser are received in nonoverlapping time intervals.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method and Apparatus for Parallel Acquisition in Lidar Array

The present application generally relates communications and hazard avoidance within a monitored driving environment. More specifically, the application teaches a system for improved target object detection in a vehicle equipped with a laser detection and ranging LIDAR system by simultaneously transmitting multiple lasers at different wavelengths. The multiple lasers are detected and separated by wavelength in order to decrease acquisition time and / or increase point density.
Owner:GM GLOBAL TECH OPERATIONS LLC

Apparatus for increase field of view for lidar detector and illuminator

The present application generally relates communications and hazard avoidance within a monitored driving environment. More specifically, the application teaches a system for improved target object detection in a vehicle equipped with a laser detection and ranging LiDAR system by using a double convex lens or a spherical lens in order of realize a greater field of view for a LiDAR detector array.
Owner:GM GLOBAL TECH OPERATIONS LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products