Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

745 results about "Flight plan" patented technology

Flight plans are documents filed by a pilot or flight dispatcher with the local Civil Aviation Authority (e.g. the FAA in the United States) prior to departure which indicate the plane's planned route or flight path. Flight plan format is specified in ICAO Doc 4444. They generally include basic information such as departure and arrival points, estimated time en route, alternate airports in case of bad weather, type of flight (whether instrument flight rules [IFR] or visual flight rules [VFR]), the pilot's information, number of people on board and information about the aircraft itself. In most countries, flight plans are required for flights under IFR, but may be optional for flying VFR unless crossing international borders. Flight plans are highly recommended, especially when flying over inhospitable areas, such as water, as they provide a way of alerting rescuers if the flight is overdue. In the United States and Canada, when an aircraft is crossing the Air Defense Identification Zone (ADIZ), either an IFR or a special type of VFR flight plan called a DVFR (Defense VFR) flight plan must be filed. For IFR flights, flight plans are used by air traffic control to initiate tracking and routing services. For VFR flights, their only purpose is to provide needed information should search and rescue operations be required, or for use by air traffic control when flying in a "Special Flight Rules Area".

Unmanned aerial vehicle management

A base module may be used to receive and house one or more unmanned aerial vehicles (UAVs) via one or more cavities. The base module receives commands from a manager device and identifies a flight plan that allows a UAV to execute the received commands. The base module transfers the flight plan to the UAV and frees the UAV. Once the UAV returns, the base module once again receives it. The base module then receives sensor data from the UAV from one or more sensors onboard the UAV, and optionally receives additional information describing its flight and identifying success or failure of the flight plan. The base module transmits the sensor data and optionally the additional information to a storage medium locally or remotely accessible by the manager device.
Owner:IMAGEKEEPER LLC

System and method for controlling drone delivery or pick up during a delivery or pick up phase of drone operation

A system including a landing location where a drone at least one of delivers and acquires a parcel, and a homing device to interact with the drone to guide the drone to the landing location independent of interaction from another source. The homing device guides the drone during the landing phase of a flight plan. A method is also disclosed.
Owner:FARRIS EMMETT +1

Vehicle data services

A method and devices are described for wirelessly uploading and downloading data to and from a mobile vehicular platform while within range of a coordinated network of base stations that monitor the location of the vehicle and optimize data throughput using any combination of diversity and beam forming adaptive antenna techniques while the vehicle is on the ground or additionally in the case of aircraft, not only on the ground, but also during take-off, climb, en-route, holding, on-approach, touchdown and rollout. Particularly, in describing this art, the intent is to address the aspects of a quantifiable vehicle environment, where the vehicle's behavior is predictable, such as in train routes, bus routes, ship dockings and aircraft flight plans.
Owner:HOLST WILLIAM +1

System and methods for autonomous tracking and surveillance

A system and methods for autonomously tracking and simultaneously providing surveillance of a target from air vehicles. In one embodiment the system receives inputs from outside sources, creates tracks, identifies the targets and generates flight plans for unmanned air vehicles (UAVs) and camera controls for surveillance of the targets. The system uses predictive algorithms and aircraft control laws. The system comprises a plurality of modules configured to accomplish these tasks. One embodiment comprises an automatic target recognition (ATR) module configured to receive video information, process the video information, and produce ATR information including target information. The embodiment further comprises a multi-sensor integrator (MSI) module configured to receive the ATR information, an air vehicle state input and a target state input, process the inputs and produce track information for the target. The embodiment further comprises a target module configured to receive the track information, process the track information, and produce predicted future state target information. The embodiment further comprises an ownship module configured to receive the track information, process the track information, and produce predicted future state air vehicle information. The embodiment further comprises a planner module configured to receive the predicted future state target information and the predicted future state air vehicle information and generate travel path information including flight and camera steering commands for the air vehicle.
Owner:THE BOEING CO

Cursor management on a multiple display electronic flight instrumentation system

An aircraft display and control system generally includes a processor, a cursor control and selection device, an aeronautical information database, a geographic database, and a plurality of display devices. Users, such as an aircraft pilot and copilot, can perform flight plan entry and modification by manipulating graphical information on the display devices using cursor control. In one embodiment, the present invention allows multiple members of an aircraft crew to share control of common flight information display areas, aids the crew's situational awareness by providing software-implemented dynamic symbology and highlighting to indicate cursor location, current panel of entry, and current focus for keyboard and cursor events.
Owner:HONEYWELL INT INC

Method of assistance in the piloting of an aerodyne

The disclosed method is implemented by a system aboard an aerodyne comprising a processor, a terminal and memories in which there are stored all the information necessary for the carrying out of a flight, the system being connected to the other on-board electronic equipment. In order to define a new flight plan to meet a new situation caused by an event, the method comprises: the interpretation of the event to determine the corrective actions to be undertaken given the context in which the aerodyne is located, the analysis of the possibilities of reconfiguring the flight plan that correspond to the corrective actions, according to predetermined and modifiable criteria, the selection of the flight plan solutions that meet the predetermined criteria, and the presenting of these flight plan solutions in association with the significant parameters that have served as the grounds for their selection.
Owner:SEXTANT AVIONIQUE

Method and system for managing flight plan data

Method and systems for managing flight plan data associated with an aircraft are provided. A list of navigational entry selections (e.g., flight plan origins and flight plan destinations) is generated. Each of the navigational entry selections is associated with the aircraft (e.g., previously used). The list of navigational entry selections is displayed to a user of the aircraft. An indication of a selection of at least one of the navigational entry selections is received from the user. The navigational entry selections are generated, for example, based on navigational entries previously stored in a memory on-board the aircraft, a location of the aircraft, or a combination of the previous navigational entries and the location of the aircraft.
Owner:HONEYWELL INT INC

System and methods for unmanned aerial vehicle navigation

A system includes an unmanned aerial vehicle (UAV) configured to be equipped with data representing a first UAV flight plan, and a ground station configured to control the UAV. The ground station is operable to receive, at a first time, a first data set representing at least one flight path of at least one aircraft, calculate a second UAV flight plan to avoid the at least one flight path of the at least one aircraft, the second UAV flight plan being based on the data representing the first UAV flight plan and the first data set representing at least one flight path of the at least one aircraft, and transmit data representing the second UAV flight plan to the UAV.
Owner:HONEYWELL INT INC

Methods and apparatus for graphical display and editing of flight plans

Systems and methods are provided for an integrated graphical user interface which facilitates the display and editing of aircraft flight-plan data. A user (e.g., a pilot) located within the aircraft provides input to a processor through a cursor control device and receives visual feedback via a display produced by a monitor. The display includes various graphical elements associated with the lateral position, vertical position, flight-plan and / or other indicia of the aircraft's operational state as determined from avionics data and / or various data sources. Through use of the cursor control device, the user may modify the flight-plan and / or other such indicia graphically in accordance with feedback provided by the display. In one embodiment, the display includes a lateral view, a vertical profile view, and a hot-map view configured to simplify the display and editing of the aircraft's flight-plan data.
Owner:HONEYWELL INT INC

System and methods for autonomous tracking and surveillance

A system and methods for autonomously tracking and simultaneously providing surveillance of a target from air vehicles. In one embodiment the system receives inputs from outside sources, creates tracks, identifies the targets and generates flight plans for unmanned air vehicles (UAVs) and camera controls for surveillance of the targets. The system uses predictive algorithms and aircraft control laws. The system comprises a plurality of modules configured to accomplish these tasks. One embodiment comprises an automatic target recognition (ATR) module configured to receive video information, process the video information, and produce ATR information including target information. The embodiment further comprises a multi-sensor integrator (MSI) module configured to receive the ATR information, an air vehicle state input and a target state input, process the inputs and produce track information for the target. The embodiment further comprises a target module configured to receive the track information, process the track information, and produce predicted future state target information. The embodiment further comprises an ownship module configured to receive the track information, process the track information, and produce predicted future state air vehicle information. The embodiment further comprises a planner module configured to receive the predicted future state target information and the predicted future state air vehicle information and generate travel path information including flight and camera steering commands for the air vehicle.
Owner:THE BOEING CO

Air traffic control system and method for four-dimensional (4D)-trajectory-based operation

The invention discloses an air traffic control system for four-dimensional (4D)-trajectory-based operation. The air traffic control system comprises a data communication module, a monitoring data fusion module, an airborne terminal module and a control terminal module, wherein the monitoring data fusion module is used for fusing the monitoring data of an air traffic control radar and automatic dependent monitoring data, and providing real-time trajectory information for the control terminal module; and the control terminal module comprises a preflight conflict-free 4D trajectory generation sub-module, an in-flight short-term 4D trajectory generation sub-module, a real-time flight conflict monitoring and alarming sub-module and a flight conflict resolution 4D trajectory optimization sub-module. The invention also discloses an air traffic control method for the system. The control terminal module processes flight plan data, generates 4D trajectories, analyzes potential traffic conflicts of air traffic conditions and provides an optimal resolution scheme. By the system and the method, flight conflicts can be effectively prevented, and the safety of air traffic can be improved.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Avionics data entry devices

Methods, systems, and apparatuses for the use of a wireless portable avionics device in conjunction with on-board flight systems and / or off-board service providers. The device may be used by aircraft personnel such as pilots and may act as a command / data entry and / or display tool to augment cockpit display systems. The device can receive flight data (e.g., a flight plan) from an off-board provider and automatically transfer it, as well as any previously prepared commands or data, to a flight management system and / or cockpit display systems. Commands and / or data (including pre-existing ones and ones entered in real-time) can be wirelessly transferred to the on-board flight systems which are not in direct physical contact with the device. Thus, the device can be easily manipulated during turbulence or under poor readability conditions. The device can be used to manipulate items shown on cockpit display systems in a timely and accurate manner.
Owner:INNOVATIVE SOLUTIONS & SUPPORT

System, module, and method of constructing a flight path used by an avionics system

A present novel and non-trivial system, module, and method for constructing a flight path used by an avionics system are disclosed. A processor receives flight plan data and object data associated with terrain and obstacles. Free cells are extracted above the objects using a recursive space decomposition technique, and a reference path is formed through traversable free space determined from the availability of free cells. In an additional embodiment, threat data associated with hostile military weaponry and significant meteorological conditions could affect the availability of free cells. A genetic algorithm applying genetic operators which include mutators is employed with aircraft kinematic constraints to refine the reference path used to form a population of best path candidates. When a best path is reached after cycling through a re-generation process of path candidates, flight path data representative of the best path is generated and provided to at least one avionics system.
Owner:ROCKWELL COLLINS INC

Unmanned Airborne Vehicle For Geophysical Surveying

An un-manned airborne vehicle (UAV), for acquiring aeromagnetic data for geophysical surveying at low altitude on land or over water, comprising an extended fuselage that is adapted to hold and maintain magnetometer and a magnetic compensation magnetometer at a minimum distance from the avionics and propulsion systems of the UAV. The magnetometer measures magnetic anomalies and the magnetic compensation magnetometer measures magnetic responses corresponding to the pitch, yaw and roll of the UAV. A data acquisition system stores and removes the magnetic response measurements from the magnetic anomaly measurements. The data acquisition system also stores a survey flight plan and transmits the same to the avionics system. The generator of the UAV is shielded and the propulsion system is stabilized to reduce magnetic and vibrational noises that can interfere with the operation of the magnetometer.
Owner:FUGRO AIRBORNE SURVEYS

System and method for textually displaying an original flight plan and a modified flight plan simultaneously

A navigational system includes a display device and logic that simultaneously presents a textual display of an original flight plan and a modified flight plan on the display device. The textual display includes a textlist of waypoints that are on the original flight plan and the modified flight plan and performance data for common waypoints that are on both the original flight plan and the modified flight plan, as well as for new waypoints that are added to the modified flight plan. The performance data for each common waypoint includes performance data for the waypoint on the original flight plan and for the waypoint on the modified flight plan. The system may further include an interface device that allows an operator to change the modified flight plan. The logic updates the textlist of waypoints on the textual display when the modified flight plan is changed and updates the performance data on the textual display for common waypoints when the modified flight plan is changed. The logic may also designate on the textual display waypoints to be removed, which correspond to waypoints that are on the original flight plan but not on the modified flight plan, and, when the modified flight plan is activated to become a new flight plan, the logic removes from the textual display the waypoints that are designated to be removed.
Owner:HONEYWELL INT INC

Integrated flight management and textual air traffic control display system and method

A system and method is provided for transmitting, receiving, initiating, and displaying textual air traffic control clearance messages simultaneously with a graphic representation of an aircraft flight plan. Data representative of a current aircraft flight plan, and one or more textual clearance message signals representative of air traffic control clearance message, are each processed. One or more images representative of the current aircraft flight plan, and one or more images representative of the textual air traffic clearance messages, are each substantially simultaneously displayed in the same display area of a flight management system display.
Owner:HONEYWELL INT INC

System and methods for automated airport air traffic control services

A system and method for automating Air Traffic Control operations at or near an airport. as a complete standalone automated system replacing the need for a human controller to make aircraft movement decisions nor the need communicate with pilots, or as semi-automated, where a controller controls how the system operates. The system with related methods and computer hardware and computer software package, automatically manages manned aircraft, remote controlled UAV and airborne-able vehicles traffic at or near an airport, eliminates ATC-induced and reduce pilot-induced runway incursions and excursions, processes control messages related to aircraft or Pilots, communicates with Pilot over ATC radio frequency, receives aircraft positions, communicates control messages with the aircraft avionics, provides pilots a dynamic map with continuous display of nearby traffic operations, shows clearance and information related to runway operations, warns pilot of runway conditions and turbulence from other operations, warns when landing gear is not locked, displays the pilot emergency exits during takeoff roll, shows the pilot when and where to exit from the runway, shows the pilot where and when to cross a junction, calculates and displays pilot optimal speed and timing on taxiways and junctions for saving fuel, calculates congestions, calculates best taxiway routes, calculates when aircraft can cross a runway, provides directives and information to pilot over CPDLC display or dynamic map for airside operations, alerts and triggers breaks of the aircraft on wrong path or when hold-short bar is breached, displays emergency personnel with routing map and final aircraft resting position for emergency operations, takes over an aircraft operation when aircraft is hijacked or deviates from the flight plan, provide standalone or manned Remote Tower functionality, Records and retains all information related to airport airside operations including aircraft positions and conditions from sensors and reports for runways, junctions and taxiways, Records and retains aircraft data and cockpit voice to ground-based servers to eliminate black-box requirements, calculate future weather and airport capacity from aircraft at or nearby airport, coordinates handoff operations with other ATC positions, interfaces with ACDM systems, airport operations center, flow center and network operations center.
Owner:IATAS AUTOMATIC AIR TRAFFIC CONTROL

Mission prioritization and work order arrangement for unmanned aerial vehicles and remotely-piloted vehicles

A framework for combining a weather risk analysis with appropriate operational rules includes a data initialization component, a rules processing component, and one or more weather risk analysis and assessment tools to evaluate a flight condition. The framework applies current, historical, predicted and forecasted weather data to the one or more operational rules governing a mission, a payload, a flight plan, a craft type, and a location of the mission for aircraft such as an unmanned aerial vehicle or remotely-piloted vehicle, and generates advisories based on the evaluation of flight conditions such as a mission compliance status, instructions for operation of unmanned aircraft, and management advisories. The flight condition advisories include either a “fly” advisory or a “no-fly” advisory, and the framework may also provide a mission prioritization and optimization system.
Owner:DTN LLC

Method for Determining the Horizontal Profile of a Flight Plan Complying with a Prescribed Vertical Flight Profile

The present invention relates to the definition, in a flight plan, of the horizontal profile of an air route with vertical flight and speed profile prescribed on departure and / or on arrival, by a stringing together of check-points and / or turn points associated with local flight constraints and called “D-Fix” because they are not listed in a published navigation database like those called “Waypoints”. It consists in charting, on curvilinear distance maps, a direct curvilinear path joining the departure point to the destination point of the air route while complying with vertical flight and speed profiles prescribed on departure and / or on arrival and while guaranteeing a circumnavigation of the surrounding reliefs and compliance with regulated overfly zones, then in approximating the series of points of the direct curvilinear path by a sequence of straight segments complying with an arbitrary maximum deviation threshold relative to the points of the series and an arbitrary minimum lateral deviation threshold relative to the set of obstacles to be circumnavigated and in adopting as “D-Fix” points the points of the intermediate intersections of the rectilinear segments.
Owner:THALES SA

System and methods for displaying video with improved spatial awareness

Methods and systems are provided for displaying a video data stream captured by a surveillance module associated with an aerial vehicle during execution of a flight plan. A method comprises displaying a timeline corresponding to the video data stream on a display device associated with the aerial vehicle and displaying a first indicator on the timeline. In accordance with one embodiment, the first indicator corresponds to a first waypoint of the flight plan, wherein the first indicator is positioned on the timeline such that the first indicator corresponds to a first segment of the video data stream at a first time. The first time is based at least in part on a position of the aerial vehicle.
Owner:HONEYWELL INT INC

Method of optimizing a flight plan

A method of optimizing a flight plan of an aircraft used in a flight management system of an aircraft is disclosed. This method makes it possible to constrain the real cost index of the mission executed to the optimal cost index CIopt predetermined by the aircraft operator, by acting on objectives ETAopt and EFOBopt of values of ETA and of EFOB to be achieved. Objectives are linked to this optimal cost index, in order to make the system return from a cost index CIm to the optimal cost index CIopt, while taking account of various constraints imposed by the ATC or the CTFM. Both constraints mext influence the cost index and constraints which limit the field of possible solutions.
Owner:THALES SA

System and Method for Airport Surface Management

Described herein are systems and methods for surface management of an airport. One embodiment of the disclosure of this application is related to a method including receiving airport data from an airport network, receiving surface surveillance data for specific segments of an airport area, identifying predicted conflicts within one of the segments based on the airport data and surface surveillance data, and allocating a taxi time slot for the flight. Another embodiment of the disclosure of this application is related to a system comprising a user interface displaying information related to flight plan data and airport data received from an airport network, and a surface management module receiving the airport data and surface surveillance data for specific segments of an airport area, identifying predicted conflicts within one of the segments based on the airport data and surface surveillance data, and allocating a taxi time slot for the flight.
Owner:PASSUR AEROSPACE

Traffic display

The present invention is directed to a traffic display for an aircraft, which includes a vertical traffic indicator. The vertical traffic indicator includes flight levels, depicted utilizing differing visual patterns to represent the current flight level as well as available and unavailable flight levels for transit. The vertical traffic indicator includes aircraft indicators positioned in relation to flight levels to indicate attitude. The aircraft indicators may also include status indicators indicating separation standards, vertical trend, intent, or whether an aircraft is a reference aircraft for an ITP. The traffic display provides clear and intuitive means of understanding the flying environment related to the performance of the ITP, increasing situational awareness and simplifying the ITP. The traffic display is specifically advantageous for performance of an ITP, but may be integrated with displays including terrain, weather, flight plan waypoints, or TCAS (Traffic Collision Avoidance System) traffic.
Owner:ROCKWELL COLLINS INC

Flight display system with enhanced temporal depiction of navigation information

In one aspect, the flight display system comprises a navigation map that includes a time window for a required time of arrival (RTA) waypoint. The time window has a proximal end indicating the aircraft's position at the RTA using a defined lowest speed and a distal end indicating the aircraft's position at the RTA using a defined highest speed. In another aspect, a pop-up time map displays flight plan waypoints mapped out along a time line adjacent to a plurality of time markers. The waypoint scrolls along the time line during flight. In another aspect, the flight display system includes a full format time map for displaying at least one flight plan waypoint mapped out along a time line adjacent to a plurality of time markers. In another broad aspect, a time / bearing map includes a plurality of concentric “range” rings corresponding to selected times in the future; a plurality of radially spaced bearing ticks positioned at selected locations about the concentric rings; and, a relative time ring presentable about a central axis of, and internal to, the concentric rings. The relative time ring represents a fixed increment in time. Selected waypoints are presentable at their relative bearing to the airplane and at their range (in time) from the airplane.
Owner:ROCKWELL COLLINS INC

Unmanned aerial vehicle flight service and supervisory system and method

InactiveCN106297417ARealize Regulatory ServicesEasy to manageAircraft traffic controlInformation processingRadar
The present invention discloses an unmanned aerial vehicle flight service and supervisory system and method. The system comprises a meteorology processing server, an information processing server, a flight plan processing server and a supervisory information processing server. The modules are employed to respectively provide meteorology product service, airspace data, geography altitude data and civil aviation annunciation information, the flight plan verification, the information of monitoring whether the flight is deviated or not, the passive and negative supervisory and the supervisory warning. The present invention further discloses an unmanned aerial vehicle flight plan calibration method based on the GRID meteorology forecast data, national radar reflection puzzle, the airspace data and the geography altitude data. The present invention further discloses an unmanned aerial vehicle operation supervision method by using the system, which depends on the supervisory information processing server, fuses the track information obtained by the passive and negative supervisory system and realizes the potential conflict analysis of the unmanned aerial vehicle flight to improve the real-time alarm information.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Vertical profile display with arbitrary plane

A system for allowing pilots to quickly determine weather hazard-free flight paths and weather hazards that exist along the aircraft flight plan. The system includes a memory, a processor, and a display device. The memory stores weather radar return information in a three-dimensional buffer. The processor is coupled to the memory. The processor receives a display distance value signal, retrieves weather radar return information stored in a plane of voxels in the three-dimensional buffer based on the selected display distance value and aircraft position information, and generates an image based on the retrieved weather radar return information. The display device is coupled to the processor for displaying the generated image.
Owner:HONEYWELL INT INC

Methods and systems for displaying predicted downpath parameters in a vertical profile display

Methods and systems are provided for presenting operating information for an aircraft in a vertical profile displayed on a display device associated with the aircraft. The vertical profile graphically depicts at least a portion of a flight plan for the aircraft, wherein the portion of the flight plan comprises a plurality of reference points. The method comprises calculating, for each reference point of the plurality of reference points, a predicted value of a first operating parameter for the aircraft at the respective reference point based at least in part on current status information for the aircraft, resulting in predicted values for the first operating parameter, and displaying the predicted values for the first operating parameter in the vertical profile.
Owner:HONEYWELL INT INC

Automated decision aid tool for prompting a pilot to request a flight level change

Provided are methods and systems for the automatic calculation and presentation of data on a display device alerting a pilot that a change in flight plan is desirable, possible and administratively compliant under air traffic control protocol. The methods and systems may automatically request the flight clearance over a data link or the pilot may override the data link.
Owner:HONEYWELL INT INC

Perspective vertical situation display system and method

A display system and method for an aircraft simultaneously displays the terrain under the flight plan, or under the current track of the aircraft, as both a two-dimensional lateral situation view image and as a perspective vertical situation view image. This provides improved tactical flight planning, and that does not erroneously show the flight plan passing through the displayed terrain.
Owner:HONEYWELL INT INC

Low-altitude rescue aircraft route planning method based on three dimensional airspace grids

The invention discloses a low-altitude rescue aircraft route planning method based on three dimensional airspace grids. The low-altitude rescue aircraft route planning method comprises that according to the three dimensional terrain, the aircraft performance and the weather distribution, the low-altitude airspace is divided into grids, nodes are generated, and the optimal flight path of a single aircraft is searched by means of an improved A* algorithm; on the basis that the flight path of the single aircraft is determined, by means of a time window estimation method, a time-space-interchange multi-aircraft conflict-free route planning method is provided, finally the shortest rescue time is taken as the optimization object, and a multi-aircraft conflict-free route planning scheme is obtained. According to the invention, an aviation rescue multi-aircraft conflict-free route planning method which takes the low-altitude complex terrain, the weather distribution and the aircraft performance into account, and a basis can be provided for the arrangement of the aircraft flight plan of an aviation emergency rescue command system.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products