Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5574 results about "NODAL" patented technology

Nodal is a secretory protein that in humans is encoded by the NODAL gene which is located on chromosome 10q22.1. It belongs to the transforming growth factor beta (TGF-β) superfamily. Like many other members of this superfamily it is involved in cell differentiation in early embryogenesis, playing a key role in signal transfer from the node, in the anterior primitive streak, to lateral plate mesoderm (LPM).

Apparatus and accompanying methods for visualizing clusters of data and hierarchical cluster classifications

A system that incorporates an interactive graphical user interface for visualizing clusters (categories) and segments (summarized clusters) of data. Specifically, the system automatically categorizes incoming case data into clusters, summarizes those clusters into segments, determines similarity measures for the segments, scores the selected segments through the similarity measures, and then forms and visually depicts hierarchical organizations of those selected clusters. The system also automatically and dynamically reduces, as necessary, a depth of the hierarchical organization, through elimination of unnecessary hierarchical levels and inter-nodal links, based on similarity measures of segments or segment groups. Attribute/value data that tends to meaningfully characterize each segment is also scored, rank ordered based on normalized scores, and then graphically displayed. The system permits a user to browse through the hierarchy, and, to readily comprehend segment inter-relationships, selectively expand and contract the displayed hierarchy, as desired, as well as to compare two selected segments or segment groups together and graphically display the results of that comparison. An alternative discriminant-based cluster scoring technique is also presented.
Owner:MICROSOFT TECH LICENSING LLC

State surveillance system and method for an object and the adjacent space, and a surveillance system for freight containers

The objective of the present invention is to detect, using a universal method, any “movement” inside of the object being monitored, while maintaining the security of a container. The movement inside of the object to be monitored includes 1) a human movement when a human enters into a container to be monitored, 2) a movement to bring a foreign article in, 3) a movement to take cargo out. To achieve the objective, this invention uses the concept of a so-called “inside-seal”. In actual configuration, a plurality of communication units (communication nodes) are installed on the walls of the container. These communication units have a predetermined powered communication capability and form a communication network communicating with each other. A communication status between each node and all of the other nodes provided in the network, and a network graph matrix is generated which defines the nodal relationship between the nodes. Since the matrix is determined not only by the property of the object to be monitored, but also by the spatial condition within the container, it is possible to detect even a small change in the space. According to the first preferred embodiment, each node transmits a low power electric wave which can reach only neighboring nodes, and each node can transmit data to remote nodes only by relaying the data to the neighboring nodes. The relaying counts (HOP counts) of each node to communicate with all of the other nodes are obtained, and based on these relaying counts, a network graph matrix is generated which defines the relaying counts to communicate between all nodes. According to the second preferred embodiment, each node transmits UWB waves to all of the other nodes, which can reach to all of the other nodes, and the distances between all the nodes are measured and a network graph matrix between all the nodes is generated.
Owner:OMRON CORP MANAGEMENT CENT OF AMERICA INC +1

Methods and apparatus for transesophageal microaccess surgery

The current invention describes methods of transesophageal access to the neck and thorax to perform surgical interventions on structures outside the esophagus in both the cervical and the thoracic cavity. It describes a liner device made of a complete or partial tubular structure, or a flat plate, the liner having means to facilitate creation of a side opening, which may include a valve. The liner with its side opening form a port structure inside the esophageal lumen. The port structure allows elongated surgical devices to pass through a perforation across the full thickness of the esophageal wall to outside location, in a controlled way. The elongated surgical devices can be diagnostic scopes, therapeutic scopes, manual elongated surgical devices, robotic arms or the like. After being deployed outside the esophagus, the surgical devices can access structures outside the esophagus, in the neck and thorax in 360 degrees of freedom around the esophageal circumference. These structures can be bony, cartilaginous, spinal, vascular, soft tissue, deep tissues, lymph nodal, cardiac, pulmonary, tracheal, nervous, muscular or diaphragmatic, skin and subcutaneous tissues of the neck, skin and subcutaneous tissues of the anterior chest wall, skin and subcutaneous tissues of the skin of the back, and skin and layers of the breast.
Owner:MICROACCESS

System and method for automatic clustering, sub-clustering and cluster hierarchization of search results in cross-referenced databases using articulation nodes

Within the context of a cross-referenced data-base, an initial “base-set” of results to a query is generated using any conventional search engine tool. The base-set is then expanded by adding to it entries referencing entries in the original set or referenced by those entries, in a possibly iterative manner. The resulting collection of entries and references is represented as a mathematical graph or network, amendable to graph theoretic analysis. Connected components within the graph form top-level clusters, and articulation nodes within these clusters are calculated. These articulation nodes serve as both navigational “gateways” and anchors for sub-clusters. Sub-clusters, consisting of the transitive descendants of the articulation nodes, are associated with each articulation node. The articulation nodes themselves then form a graph, which is analyzed further for prominence, and a hierarchy of articulation nodes is calculated. The resulting hierarchy consisting of the top-level clusters and the sub-clusters associated with the articulation nodes is then presented visually to users in a manner enabling them to easily navigate through the space of expanded search results.
Owner:HELLMAN ZIV Z +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products