Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5199 results about "Soft tissue" patented technology

In anatomy, soft tissue includes the tissues that connect, support, or surround other structures and organs of the body, not being hard tissue such as bone. Soft tissue includes tendons, ligaments, fascia, skin, fibrous tissues, fat, and synovial membranes (which are connective tissue), and muscles, nerves and blood vessels (which are not connective tissue).

Surgical instrument articulation joint cover

A surgical instrument including a shaft, an end effector, and a joint, wherein the end effector can be moved relative to the shaft about the joint. In various embodiments, the joint can include a cover configured to be positioned intermediate the end effector and the shaft. In at least one embodiment, the cover can be connected to at least one of the end effector and the shaft and can be configured to at least partially surround the joint in order to prevent soft tissue positioned adjacent to the joint from being pulled into and / or pinched by the joint.
Owner:CILAG GMBH INT

Closure systems for a surgical cutting and stapling instrument

A surgical stapling instrument including an actuator configured to be retracted relative to the distal end of the disposable loading unit and rotate an anvil between an open position and a closed position. The actuator can include a cam, where the cam can include an arcuate profile having an apex configured to be in contact with the anvil when the anvil is in a closed position. In at least one such embodiment, the anvil can apply a clamping force to the soft tissue prior to the staples being deployed to prevent, or at least inhibit, soft tissue from flowing, or ‘milking’, out of the distal end of the disposable loading unit. In various embodiments, a surgical stapling instrument can include a disposable loading unit having an anvil which can be moved between open, closed, and / or collapsed positions to facilitate the insertion of the disposable loading unit through a trocar.
Owner:CILAG GMBH INT

Porous membranes for use with implantable devices

A membrane for implantation in soft tissue comprising a first domain that supports tissue ingrowth, disrupts contractile forces typically found in a foreign body response, encourages vascularity, and interferes with barrier cell layer formation, and a second domain that is resistant to cellular attachment, is impermeable to cells and cell processes, and allows the passage of analytes. The membrane allows for long-term analyte transport in vivo and is suitable for use as a biointerface for implantable analyte sensors, cell transplantation devices, drug delivery devices, and / or electrical signal delivering or measuring devices. The membrane architecture, including cavity size, depth, and interconnectivity, provide long-term robust functionality of the membrane in vivo.
Owner:DEXCOM INC

Multi-point tissue tension distribution device and method, a chin lift variation

InactiveUS7510566B2Increase healing responseRelieve painSuture equipmentsDiagnosticsChinWound healing
A tissue approximation device and processes for using the device are provided. The device is an implantable, biodegradable construct that has attachment points emanating from a supportive backing. The device improves the mechanical phase of wound healing and optimally distributes tension over the contact area between the device and tissue. Processes for using the device include soft tissue attachment and soft tissue to bone attachment. Several variations are particularly applicable to facilitating tissue approximation in surgical cosmetic applications, particularly chin lifts. Generally, tissue to be lifted may be set on a chin lift device via attachment points before or after the device is secured to a patient's bone. Variations of the device are described along with a method of installing the chin lift device. Also described is a tool particularly useful for installing a chin lift device.
Owner:MICROAIRE SURGICAL INSTR +2

Hybrid biologic-synthetic bioabsorbable scaffolds

A bioprosthetic device is provided for soft tissue attachment, reinforcement, and or reconstruction. The device comprises a naturally occurring extracellular matrix portion and a three-dimensional synthetic portion. In illustrated embodiments, the naturally occurring extracellular matrix portion comprises layers of small intestine submucosa, and the three-dimensional synthetic portion comprises a foam or a three-dimensional mesh, textile, or felt.
Owner:DEPUY SYNTHES PROD INC

Remotely anchored tissue fixation device

InactiveUS7172615B2Degree of approximation necessaryVariable flexibilitySuture equipmentsCosmetic implantsWound healingBiomedical engineering
A tissue approximation device and processes for using the device, particularly in the mid-face region, are provided. The device is an implantable, biodegradable construct that has attachment points emanating from at least one supportive backing. The device also has a connecting member or leash which extends between the backing and an anchor which is attached to bone or soft tissue. Attachment to soft tissue is accomplished by a second backing having attachment points emanating from the backing and attachment to bone is accomplished by a post. The connecting member allows for repeated adjustments in length between the anchor and the backing in vivo or ex vivo until the desired amount of tissue approximation is achieved. The device improves the mechanical phase of wound healing and evenly distributes tension over the contact area between the device and tissue.
Owner:OXFORD FINANCE +2

Sleeve and loop knotless suture anchor assembly

A sleeve and loop knotless suture anchor assembly for attachment of tissue to bone mass. The assembly includes a hollow anchoring sleeve with a suture loop attached thereto and an anchor device for capturing the loop with a snag element or recess thereon or therein the anchor device. Once the loop is captured, the anchor is inserted securely into the hollow anchoring sleeve which is installed in the bone mass which facilitates a repair of the torn away soft tissue.
Owner:THAL RAYMOND

Expandable support device and method of use

An expandable support device for tissue repair is disclosed. The device can be used to repair hard or soft tissue, such as bone or vertebral discs. The device can have multiple flat sides that remain flat during expansion. A method of repairing tissue is also disclosed. Devices and methods for adjusting (e.g., removing, repositioning, resizing) deployed orthopedic expandable support devices are also disclosed. The expandable support devices can be engaged by an engagement device. The engagement device can longitudinally expand the expandable support device. The expandable support device can be longitudinally expanded until the expandable support device is substantially in a pre-deployed configuration. The expandable support device can be then be physically translated and / or rotated.
Owner:STOUT MEDICAL GROUP

Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device

An innovative bone anchor and methods for securing soft tissue, such as tendons, to bone, which permit a suture attachment that lies entirely beneath the cortical bone surface. Advantageously, the suturing material between the soft tissue and the bone anchor is secured without the need for tying a knot. The suture attachment to the bone anchor involves the looping of a length of suture around a pulley within the bone anchor, tightening the suture and attached soft tissue, and compressing the suture against the bone anchor. The bone anchor may be a tubular body having a lumen with a locking plug that compresses the suture therein. The pulley may be a pin located near a distal end of the tubular body around which the length of suture is looped. Alternatively, a pulley may be a bridge portion of the tubular body between two spaced apertures in the wall of the body. The locking plug may include a shaft and an enlarged head that interferes with the tubular body to provide a positive stop. An actuation rod attached at a frangible section to the shaft may be manipulated by an external handle during locking of the suture within the bone anchor. The bone anchor further may include locking structure for securing itself within a bone cavity.
Owner:ARTHROCARE

Surgical instrument for orthopedic surgery

ActiveUS20100057087A1Safe foraminal decompressionDiagnosticsEndoscopic cutting instrumentsTool bitPlastic surgery
A rotatable surgical instrument having a protective hood with articulating bendable distal end is provided to improve and enable various orthopedic surgical procedures such as arthroscopy. The protective hood surrounds the surgical tool bit exposing only a portion of the tool bit for removing bone or soft tissue material and protects the nerve from the surgical tool bit. The protective hood can be controllably rotated from the instrument's hand piece to control the orientation of the attack angle of the surgical tool bit. Additionally, the bending of the distal end of the instrument can be controlled from the hand piece.
Owner:GLOBUS MEDICAL INC

Implants for replacing cartilage, with negatively-charged hydrogel surfaces and flexible matrix reinforcement

ActiveUS9314339B2Strong and durableStrong and secure anchoringFinger jointsWrist jointsFiberChemical agent
A permanent non-resorbable implant allows surgical replacement of cartilage in articulating joints, using a hydrogel material (such as a synthetic polyacrylonitrile polymer) reinforced by a flexible fibrous matrix. Articulating hydrogel surface(s) are chemically treated to provide a negative electrical charge that emulates the negative charge of natural cartilage, and also can be treated with halogenating, cross-linking, or other chemical agents for greater strength. For meniscal-type implants, the reinforcing matrix can extend out from the peripheral rim of the hydrogel, to allow secure anchoring to soft tissue such as a joint capsule. For bone-anchored implants, a porous anchoring layer enables tissue ingrowth, and a non-planer perforated layer can provide a supportive interface between the hard anchoring material and the softer hydrogel material.
Owner:FORMAE

Systems and methods for placing materials into bone

Systems and methods for delivering material into bone deploy a cannula through soft tissue to establish a subcutaneous path into bone. A material is introduced into bone through the cannula. The systems and methods advance a tamping instrument through the cannula to urge material residing in the cannula into bone. The introducing step delivers material at a pressure no greater than about 360 psi.
Owner:ORTHOPHOENIX

Free loop knotless suture anchor assembly

A free loop knotless suture anchor assembly for attachment of tissue to bone mass. The assembly includes a continuous suture loop and an anchor means for capturing portions of the loop with a snag means or recess thereon or therein the anchor means. Once the loop is captured, the anchor is inserted securely into a bone mass which facilitates in a repair of the torn away soft tissue.
Owner:THAL RAYMOND

Tissue discrimination and applications in medical procedures

InactiveUS7050848B2Different transmission propertyDifferent capacitanceElectrotherapyInternal osteosythesisTissues typesBone Cortex
A system and method for discriminating tissue types, controlling the level of therapy to tissue, and determining the health or a known tissue by measuring the characteristics an electrical signal applied to conductive element located within or by the tissue. Additionally, the system and method may be used for determining whether the conductive tip of a pedicle probe or pedicle screw is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue, whether the conductive tip of a cannula is located adjacent to one of nerve tissue and annulus tissue, and whether the conductive tip of a cathode is located adjacent to one of nerve tissue and prostate gland tissue.
Owner:NUVASIVE

Oscillating, steerable, surgical burring tool and method of using the same

The invention is an oscillating, high speed burring instrument comprised of a handpiece, an elongate arthroscopic catheter extending distally from handpiece and terminating in a flexible or hinged portion which itself terminates with an oscillating burr. At least the distal portion of torsional drive shaft is radially flexible to accommodate the flexibility of the flexible or hinged portion of the catheter. A high speed oscillation of the burr is employed effective for cutting or abrading bone, which is typically oscillated at 10 kHz or higher. The burr is oscillated over a substantial arc, namely a majority portion of a full circle. The burr is not shielded in any manner and is fully exposed to the operational theater. The burr cuts or abrades bone or hard matter, while leaving softer tissues substantially or entirely undamaged.
Owner:RGT UNIV OF CALIFORNIA

Tissue supporting device and method

A tissue supporting device is provided and method of use. The device includes an anchor element having a plate-like element and first and second side walls extending upwardly therefrom. The plate-like element is defined by front and rear edges, and first and second side edges, with the rear edge being longer than the front edge. The first and second side walls are aligned substantially along at least a portion of the first and second side edges of the plate-like element such that a distance between the first and second side walls at a front side is less than a distance between the first and second side walls at a rear side. The device also includes a soft tissue supporting element adapted for engaging and supporting soft tissue. The soft tissue supporting element is coupled to the plate-like element and extends outwardly from the anchor element.
Owner:ETHICON INC

Ultrasonically Powered Medical Devices and Systems, and Methods and Uses Thereof

The present invention provides a new family of ultrasonically powered medical devices and systems for powering such devices. Disclosed are methods for improving the overall power transfer efficiency of devices according to the present invention, as well as a wide variety of medical uses for such devices and systems. Devices of the present invention comprise a transducer that, during operation, converts electrical energy into high frequency, low amplitude mechanical vibrations that are transmitted to a driven-member, such as a wheel, that produces macroscopic rotary or linear output mechanical motions. Such motions may be further converted and modified by mechanical means to produce desirable output force and speed characteristics that are transmitted to at least one end-effector that performs useful mechanical work on soft tissue, bone, teeth and the like. Power systems of the present invention comprise one or more such handheld devices electrically connected to a power generator. Examples of powered medical tools enabled by the present invention include, but are not limited to, linear or circular staplers or cutters, biopsy instruments, suturing instruments, medical and dental drills, tissue compactors, tissue and bone debriders, clip appliers, grippers, extractors, and various types of orthopedic instruments. Devices of the present invention may be partly or wholly reusable, partly or wholly disposable, and may operate in forward or reverse directions, as well as combinations of the foregoing. The devices and systems of the present invention provide a safe, effective, and economically viable alternative source for mechanical energy, which is superior to AC or DC (battery) powered motors, compressed air or compressed gas, and hand powered systems.
Owner:RABIN BARRY HAL

Suture anchor system and method of use

A suture anchor system includes a suture anchor, having a flexible suture eyelet attached thereto, which serves as a flexible interface for a suture strand. The suture anchor is preferably bioabsorbable, and it has a flared feature on one side of the second or proximal end thereof. The flared feature renders the suture anchor asymmetrical in a plane that includes the longitudinal axis of the anchor. A method for anchoring soft tissue is also disclosed.
Owner:ETHICON INC

Vertebral facet joint prosthesis and method of fixation

Devices and methods for altering the spacing and motion at the facet joints of the vertebral column are provided. One embodiment of the invention comprises a prosthesis with surfaces configured to articulate with the facets of the facet joint. A retaining member for anchoring the prosthesis within the facet joint is optionally included. Methods for surgically and less invasively implanting the prosthesis and securing the prosthesis to the articular processes or surrounding soft tissue are also provided.
Owner:SPINAL ELEMENTS INC

Expandable support device and method of use

An expandable support device for tissue repair is disclosed. The device can be used to repair hard or soft tissue, such as bone or vertebral discs. A method of repairing tissue is also disclosed. The device and method can be used to treat compression fractures. The compression fractures can be in the spine. The device can be deployed by compressing the device longitudinally resulting in radial expansion.
Owner:NUVASIVE

Apparatus and method for the treatment of tissue with ultrasound energy by direct contact

Apparatus and method for the treatment of tissue, such as hard and soft tissues, wounds, tumors, muscles, and cartilage, through the direct contact of ultrasound energy is disclosed. Ultrasound energy is delivered to a target area through direct contact with an ultrasound tip. Ultrasound energy is also delivered through direct contact with a coupling medium. The ultrasound tip is specially designed to comprise of a cavity area for controlled fragmentation and the simultaneous sonication of a target area. The specially designed ultrasound tip allows for ultrasound energy to focus on a target area. The ultrasound apparatus may be moved in a variety of different directions during the treatment of tissue.
Owner:BACOUSTICS LLC

Unicondylar knee implant

A knee prosthesis, methods of implanting the prosthesis, method of treating arthritis of the knee, and a kit therefore are provided. The prosthesis answers many of the limitations of current knee prosthetic devices by providing a two-component (or alternatively, an optional three-component) device, as either a single structure, or as separate pieces. One of the components is constructed of low friction material, while the second is composed of a weight-dissipating cushioning material; the optional third component is constructed of low friction material. The prosthesis is initially attached to surrounding soft tissue in the knee by biodegradable sutures; it is held permanently in place by fibrous ingrowth into a porous collagen rim in the cushioning component. Major improvements provided by the present invention over currently available prostheses include minimal incisions, minimal or no bone cuts, minimal overall dissection (these improvements lead to shorter hospital stays and rapid rehabilitation and fewer potential for side effects), less prosthetic wear, greater longevity, fewer activity restrictions, able to be used on young, large, active patients, ease of revision, ease of conversion into a total knee arthroplasty if needed.
Owner:MICHALOW ALEXANDER

Tissue remover and method

An electromagnetically induced cutting mechanism provides accurate cutting operations on soft tissues. The electromagnetically induced cutter is adapted to interact with atomized fluid particles. A tissue remover comprises an aspiration cannula housing a fluid and energy guide for conducting electromagnetically induced cutting forces to the site within a patient's body for aspiration of soft tissue. The cannula is provided with a cannula distal end. The proximal end of the cannula is provided with fluid flow connection to an aspiration source. Separated soft tissue and fluid are aspirated through the cannula distal end and the cannula by an aspiration source at the proximal end of the cannula.
Owner:BIOLASE TECH INC

System for tissue cavity closure

Surgical systems for less invasive access to and isolation of an atrial appendage are provided. A suturing grasper compresses soft tissue structures and deploys one or more sutures through complimentary pledget(s) carried by the grasper. The pledgets are reinforced, containing support members that define the profile of the stitch and distribute stresses applied by the stitch, once tightened, over a length of tissue. This hardware may be applicable to other surgical and catheter based applications as well including: compressing soft tissue structures lung resections and volume reductions; gastric procedures associated with reduction in volume, aneurysm repair, vessel ligation, or other procedure involving isolation of, resection of, and reduction of anatomic structures.
Owner:ATRICURE

Expandable support device and method of use

An expandable support device for tissue repair is disclosed. The device can be used to repair hard or soft tissue, such as bone or vertebral discs. A method of repairing tissue is also disclosed. The device and method can be used to treat compression fractures. The compression fractures can be in the spine. The device can be deployed by compressing the device longitudinally resulting in radial expansion.
Owner:STOUT MEDICAL GROUP

Expandable support device

A device for providing support for biological tissue is disclosed. The device can expand and be implanted in lieu of removed or otherwise missing bone, such as a vertebra, and / or soft tissue, such as a intervertebral disc. The device can be configured to radially expand in a single plane when the device is longitudinally contracted. Methods for using the device are also disclosed.
Owner:STOUT MEDICAL GROUP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products