Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

898 results about "Ultrasound energy" patented technology

Ultrasound energy, simply known as ultrasound, is a type of mechanical energy called sound characterized by vibrating or moving particles within a medium. Ultrasound is distinguished by vibrations with a frequency greater than 20,000 Hz, compared to audible sounds that humans typically hear with frequencies between 20 and 20,000 Hz. Ultrasound energy requires matter or a medium with particles to vibrate to conduct or propagate its energy. The energy generally travels through most mediums in the form of a wave in which particles are deformed or displaced by the energy then reestablished after the energy passes. Types of waves include shear, surface, and longitudinal waves with the latter being one of the most common used in biological applications. The characteristics of the traveling ultrasound energy greatly depend on the medium that it is traveling through. While ultrasound waves propagate through a medium, the amplitude of the wave is continually reduced or weakened with the distance it travels. This is known as attenuation and is due to the scattering or deflecting of energy signals as the wave propagates and the conversion of some of the energy to heat energy within the medium. A medium that changes the mechanical energy from the vibrations of the ultrasound energy into thermal or heat energy is called viscoelastic. The properties of ultrasound waves traveling through the medium of biological tissues has been extensively studied in recent years and implemented into many important medical tools.

Multi-modality ablation device

An instrument for ablation of tissue. The instrument including: a body having at least one surface for contacting a tissue surface, the at least one surface being substantially planar; an ultrasonic transducer disposed in the body for generating ultrasonic energy and directing at least a portion of the ultrasonic energy to the tissue surface, the ultrasonic transducer being operatively connected to an ultrasonic generator; at least one radio-frequency electrode disposed on the at least one surface for directing radio frequency energy to the tissue surface, the at least one radio-frequency electrode being operatively connected to a power source; and one or more switches for selectively coupling at least one of the ultrasonic transducer to the ultrasonic generator and the at least one radio-frequency electrode to the power source.
Owner:ETHICON INC

Apparatus and method for the treatment of tissue with ultrasound energy by direct contact

Apparatus and method for the treatment of tissue, such as hard and soft tissues, wounds, tumors, muscles, and cartilage, through the direct contact of ultrasound energy is disclosed. Ultrasound energy is delivered to a target area through direct contact with an ultrasound tip. Ultrasound energy is also delivered through direct contact with a coupling medium. The ultrasound tip is specially designed to comprise of a cavity area for controlled fragmentation and the simultaneous sonication of a target area. The specially designed ultrasound tip allows for ultrasound energy to focus on a target area. The ultrasound apparatus may be moved in a variety of different directions during the treatment of tissue.
Owner:BACOUSTICS LLC

Focused ultrasound for pain reduction

Methods and devices that provide ultrasonic energy used to cause one or more nerves to become dysfunctional. A nerve to be treated is placed in the focal zone of ultrasonic energy emitted by ultrasound transducer. A first level of ultrasonic energy is provided to the nerve using the ultrasound transducer, the first level sufficient to stimulate the nerve. A verification is made that the desired nerve is being stimulated by the first level of ultrasonic energy. For example, the patient may be asked to confirm that the ultrasonically stimulated nerve corresponds to the pain that is affecting the patient. Subsequent to verifying the stimulated nerve is the nerve desired for the reduction of pain, a second level of ultrasonic energy is delivered to the nerve using the ultrasound transducer, the second level of ultrasonic energy sufficient to cause nerve dysfunction.
Owner:VAITEKUNAS JEFFREY J

Ultrasound therapy for selective cell ablation

The invention provides a method of sensitising target cells to ultrasound energy using a stimulus such as an electric field. This "electrosensitisation" enables target cells to be disrupted by ultrasound at frequencies and energies of ultrasound which do not cause disruption of non-sensitised (i.e., non-target) cells. As a consequence, the method increases the selectivity of ultrasound therapy, providing a way to ablate undesired cells, such as diseased cells (e.g., tumor cells) while minimising harm to neighboring cells. In another aspect, however, ultrasound can be used to sensitise cells while the electrical field is used to disrupt cells. The invention also provides an apparatus for performing the method and assays for identifying gene products and other molecules involved in apoptosis.
Owner:GENDEL

Implantable medical device for monitoring cardiac blood pressure and chamber dimension

InactiveUS20050027323A1Maximize cardiac outputConvenient timeCatheterHeart stimulatorsSonificationHeart chamber
Implantable medical devices (IMDs) for monitoring signs of acute or chronic cardiac heart failure by measuring cardiac blood pressure and mechanical dimensions of the heart and providing multi-chamber pacing optimized as a function of measured blood pressure and dimensions are disclosed. The dimension sensor or sensors comprise at least a first sonomicrometer piezoelectric crystal mounted to a first lead body implanted into or in relation to one heart chamber that operates as an ultrasound transmitter when a drive signal is applied to it and at least one second sonomicrometer crystal mounted to a second lead body implanted into or in relation to a second heart chamber that operates as an ultrasound receiver. The ultrasound receiver converts impinging ultrasound energy transmitted from the ultrasound transmitter through blood and heart tissue into an electrical signal. The time delay between the generation of the transmitted ultrasound signal and the reception of the ultrasound wave varies as a function of distance between the ultrasound transmitter and receiver which in turn varies with contraction and expansion of a heart chamber between the first and second sonomicrometer crystals. One or more additional sonomicrometer piezoelectric crystal can be mounted to additional lead bodies such that the distances between the three or more sonomicrometer crystals can be determined. In each case, the sonomicrometer crystals are distributed about a heart chamber such that the distance between the separated ultrasound transmitter and receiver crystal pairs changes with contraction and relaxation of the heart chamber walls.
Owner:MEDTRONIC INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products