Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4321 results about "Runway" patented technology

According to the International Civil Aviation Organization (ICAO), a runway is a "defined rectangular area on a land aerodrome prepared for the landing and takeoff of aircraft". Runways may be a man-made surface (often asphalt, concrete, or a mixture of both) or a natural surface (grass, dirt, gravel, ice, sand or salt). Runways, as well as taxiways and ramps, are sometimes referred to as “tarmac,” though very few runways are built using tarmac.

Optical transmission tube and applications thereof

An optical transmission tube for illumination is uniquely incorporated into any one of a variety of automotive, commercial, retail, structural, architectural, safety, or other products including running boards, vehicle interior compartments such as a glove box, approximate the license plate attachment area on a vehicle, a trunk, a vehicle hood, on a vehicle door, a vehicle bumper, a vehicle luggage rack, a picture frame, a flashlight, a building, a guard rail, a construction barrier, a bicycle, a sign, an appliance interior compartment such as a refrigerator, a part bin, a retail display shelf, a clipboard, a step, a tractor trailer, a desk, a walkway, a room or storage chamber, a runway, an instrument panel, a railroad crossing gate, an emergency sign, an elevator doorway, a swimming pool, a dog collar, a fish tank, a baby crib a hand rail, an inline skate an island in a parking lot or on a street, affixed to a curb, or on safety clothing.
Owner:BRIDGESTONE CORP

Elevated airfield runway and taxiway edge-lights utilizing light emitting diodes

A runway and taxiway lighting system (of FIG. 1). The system (100) includes a housing (105) as part of a light assembly (102), which light assembly (102) includes a light source (120) for emitting light (123), and a light pipe (126). The light pipe (126) has a first end (124) in close association with the light source (120) for coupling the light (123) thereinto, and a second end (128) from which the light (123) is dispersed. The system (100) also includes a power source encased in a power box (108), and operatively connected to the light assembly (120) for providing power thereto.
Owner:ADB SAFEGATE AMERICAS LLC

Runway obstacle detection system and method

An airborne radar system is disclosed. The airborne radar system comprises a radar antenna, radar circuitry coupled to the radar antenna, and a runway database comprising runway location information. The airborne radar system also comprises a processing device retrieving from the runway database, runway location information for a runway being approached by an aircraft, based on the location of the aircraft, and directing a radar beam defined by a polygon which represents the runway and which is derived from the runway information, the processing device determining whether there are any obstacles on the runway.
Owner:ROCKWELL COLLINS INC

Landing gear method and apparatus for braking and maneuvering

Aircraft landing gear comprised of a wheel hub motor / generator disks stack, includes alternating rotor and stator disks mounted with respect to the wheel support and wheel. The wheel hub motor / generator can provide motive force to the wheel when electrical power is applied, which may be applied prior to touch-down thus decreasing the difference in relative velocities of the tire radial velocity with that of the relative velocity of the runway thus greatly reducing the sliding friction wear of said tire. After touchdown the wheel hub motor / generator may be used as a generator thus applying a regenerative braking force and / or a motorized braking action to the wheel. The energy generated upon landing maybe dissipated through a resistor and / or stored for later use in providing a source for motive power to the aircraft wheels for the purpose of taxiing and ground maneuvers of said aircraft.
Owner:DELOS AEROSPACE

System and method for enhancing computer-generated images of terrain on aircraft displays

A system and method are disclosed for enhancing the visibility and ensuring the correctness of terrain and navigation information on aircraft displays, such as, for example, continuous, three-dimensional perspective view aircraft displays conformal to the visual environment. More specifically, an aircraft display system is disclosed that includes a processing unit, a navigation system, a database for storing high resolution terrain data, a graphics display generator, and a visual display. One or more independent, higher precision databases with localized position data, such as navigation data or position data is onboard. Also, one or more onboard vision sensor systems associated with the navigation system provides real-time spatial position data for display, and one or more data links is available to receive precision spatial position data from ground-based stations. Essentially, before terrain and navigational objects (e.g., runways) are displayed, a real-time correction and augmentation of the terrain data is performed for those regions that are relevant and / or critical to flight operations, in order to ensure that the correct terrain data is displayed with the highest possible integrity. These corrections and augmentations performed are based upon higher precision, but localized onboard data, such as navigational object data, sensor data, or up-linked data from ground stations. Whenever discrepancies exist, terrain data having a lower integrity can be corrected in real-time using data from a source having higher integrity data. A predictive data loading approach is used, which substantially reduces computational workload and thus enables the processing unit to perform such augmentation and correction operations in real-time.
Owner:HONEYWELL INT INC

Surveillance and warning system

A system and method for providing entry-point, boundary-line, and presence intrusion detection by means of an intelligent controller process capable of driving both field alert / alarm systems and security station monitoring devices and for providing occupancy warnings and critical status alerts, one embodiment providing runway occupancy warnings and critical runway status alerts to both flight crew approaching an airfield and air traffic controllers managing ground traffic, the system including: a detection system, airfield output devices (including all FAROS, GAROS and CTAF Runway Occupancy Radio Signals (RORS)), an airfield communications network, a centralized data processing unit that contains all of the algorithms to drive light control, logging, and an optional administrative network layer that hosts a graphical user interface.
Owner:PATRIOT TECH

System and methods for automated airport air traffic control services

A system and method for automating Air Traffic Control operations at or near an airport. as a complete standalone automated system replacing the need for a human controller to make aircraft movement decisions nor the need communicate with pilots, or as semi-automated, where a controller controls how the system operates. The system with related methods and computer hardware and computer software package, automatically manages manned aircraft, remote controlled UAV and airborne-able vehicles traffic at or near an airport, eliminates ATC-induced and reduce pilot-induced runway incursions and excursions, processes control messages related to aircraft or Pilots, communicates with Pilot over ATC radio frequency, receives aircraft positions, communicates control messages with the aircraft avionics, provides pilots a dynamic map with continuous display of nearby traffic operations, shows clearance and information related to runway operations, warns pilot of runway conditions and turbulence from other operations, warns when landing gear is not locked, displays the pilot emergency exits during takeoff roll, shows the pilot when and where to exit from the runway, shows the pilot where and when to cross a junction, calculates and displays pilot optimal speed and timing on taxiways and junctions for saving fuel, calculates congestions, calculates best taxiway routes, calculates when aircraft can cross a runway, provides directives and information to pilot over CPDLC display or dynamic map for airside operations, alerts and triggers breaks of the aircraft on wrong path or when hold-short bar is breached, displays emergency personnel with routing map and final aircraft resting position for emergency operations, takes over an aircraft operation when aircraft is hijacked or deviates from the flight plan, provide standalone or manned Remote Tower functionality, Records and retains all information related to airport airside operations including aircraft positions and conditions from sensors and reports for runways, junctions and taxiways, Records and retains aircraft data and cockpit voice to ground-based servers to eliminate black-box requirements, calculate future weather and airport capacity from aircraft at or nearby airport, coordinates handoff operations with other ATC positions, interfaces with ACDM systems, airport operations center, flow center and network operations center.
Owner:IATAS AUTOMATIC AIR TRAFFIC CONTROL

Collision Avoidance Warning And Taxi Guidance Device

The present invention relates to a collision avoidance warning system for an aircraft (1). The system comprises a light source (8, 9), sensors (10, 11, 12) mounted on the aircraft (1) and processing means for determining the dimensions and location of an object (15) relative to the aircraft (1) so as to determine whether a collision alert is to be given. The present invention is particularly suited to providing collision alert warnings on the ground, such as when the aircraft (1) is taxiing and manoeuvring on runways and in aircraft hangars.
Owner:BUTLER K S +1

Smart airport automation system

A smart airport automation system includes a subsystem that inputs weather and airport configuration data to determine an active runway in use and an airport state. Another subsystem inputs aircraft position and velocity data from available surveillance sources, known flight-intent information, and past aircraft trajectories to project future aircraft unconstrained trajectories. A third subsystem uses the projected trajectories and aircraft intent to determine desired landing and takeoff sequences, and desired adjacent aircraft spacing. A fourth subsystem uses such information to predict potential aircraft conflicts, such as a loss of acceptable separation between adjacent aircraft. A fifth subsystem packages the weather, airport configuration, aircraft state, desired landing / takeoff sequence, and potential conflict detection into a verbal advisory message that is broadcast on a local common radio frequency. A sixth subsystem uses the projected trajectory information to control the runway and taxiway lighting system.
Owner:ARCHITECTURE TECH +1

Countermeasure system for birds

InactiveUS20110144829A1Learning effect can be minimizedPrevent unnecessary noiseAnimal huntingDigital data processing detailsJet aeroplaneCountermeasure
Provided is a bird countermeasure system. The bird countermeasure system includes a bird countermeasure robot configured to be operated through a remote command while patrolling or moving in an area adjacent to a runway or taxiway along which airplanes take off, land or taxi so as to approach the runway or taxiway or to detect or repel birds located close to the runway or taxiway.
Owner:KOREA ATOMIC ENERGY RES INST

Method and system for tracking and prediction of aircraft trajectories

A method for predicting the trajectory of an aircraft is disclosed. It yields the arrival / departure times for a plurality of aircraft with respect to a specified system resource and is based upon specified data and other operational factors pertaining to the aircraft and system resource. This process comprises the steps of (a) collecting and storing the specified data and operational factors, (b) processing, at an initial instant, the specified data that is applicable at that instant to the aircraft so as to predict an initial trajectory encompassing arrival / departure times for each aircraft, (c) upgrading these initial trajectory predictions for effects of (1) environmental factors (weather, turbulence), (2) actions of the Air traffic Control system (e.g., stacking incoming aircraft when runway demand is greater than availability), and (3) secondary assets (e.g., crew availability / legality, gate availability, maintenance requirements), (d) communicating these trajectory predictions to interested parties and (e) continuously monitoring all trajectories, and, as necessary, updating the predictions.
Owner:BAIADA R MICHAEL +1

Unmanned aircraft landing navigation system based on vision

The invention provides a vision-based self-aid landing navigation system for an unattended air plane, which comprises a software arithmetic and a hardware arrangement. The software arithmetic comprises a computer vision arithmetic and an information merging and state estimation arithmetic; the hardware arrangement comprises a runway feature, on-board sensor subsystem and an information merging subsystem. The on-board sensor subsystem comprises an on-board camera system, an on-board inertial navigation system, a height meter system and a magnetic compass, measures the real UAV state, traces and analyzes the runway features by the on-board camera system, gets the measurements of the runway feature points, and sends the measurements to the information merging subsystem. The information merging subsystem gets the estimated value of the runway feature points through the runway model and the camera system model based on the estimated value of the airplane state at previous period as well as the measurement on the airplane state at current period by the on-board sensor subsystem, and compares with the measurements, merges other measurement information, and gets navigation information of high accuracy through calculation by the data processing module.
Owner:BEIHANG UNIV

High Performance VTOL Aircraft

The present disclosure relates to a high performance Vertical Takeoff and Landing (VTOL) aircraft for executing hovering flight, forward flight, and transitioning between the two in a stable and efficient manner. The VTOL aircraft provides a highly stable, controllable and efficient VTOL aircraft. The preferred comprises: (1) a pusher propeller configuration with strategic placement which maximizes the effective use of thrust, (2) four propellers which allow for the highly-controllable and mechanically simple control methods used in multirotor aircraft, (3) electric motors which create mechanically simple, lightweight and reliable operation, (4) and a tandem wing configuration which is stable, controllable and efficient in both hovering and forward flight. The VTOL aircraft is capable of full runway, short runway or vertical takeoffs or landings, having unobstructed forward view for camera and sensor placement; and providing a compact, mechanically simple and low-maintenance VTOL aircraft design.
Owner:HYUNDAI MOTOR CO LTD +1

System and method for integrating air and ground transportation of passengers and cargo

A system and method for integrating air and ground transportation of passengers and cargo. The system comprises a plurality of universal passenger containers. The system further comprises a plurality of universal cargo containers. An airplane is provided with a hollow fuselage adapted to be loaded with a plurality of passenger and / or cargo containers. A flatbed trailer can be provided to carry a passenger or a cargo container. A tractor vehicle can be provided to transport flatbed trailers between airplanes, locations within the airport, and points of origin and destination outside the airport complex. A system can be provided to load and unload passenger and cargo containers into and out of airplanes at the airport. A system is provided comprised of an airport complex including take-off and landing runways, taxiways, airplane staging areas, apparatus for detection of weapons in passenger and cargo containers, and air terminals with arrival and departure gates and baggage handling conveyors. A system is also provided comprised of remote air terminals at strategic locations a distance from the airport complex.
Owner:REZAI SOHEIL

Vehicle barrier system

A barrier vehicle system for an amusement race track is formed from a chain of pivotally coupled barrier modules. Each barrier module has a top and a bottom link separated by a spacer structurally joined with the top and bottom links to create a rigid structure when assembled. A pin extends through the top and bottom links, to one side of the spacer. An resilient, deformable barrel is journalled on the pin. To assist in attenuating high energy impacts, an extendable, energy-absorbing mechanism is attached to one end of the barrier, and the other end of the barrier is anchored to the ground.
Owner:FESTIVAL FUN PARKS +1

Autonomous transport system

An autonomous transport system is disclosed, formed by four main subsystems: a channel subsystem; a vehicle subsystem; a wheel guide subsystem and central control station subsystem. The system is designed for the transportation of people or goods, to be used in tall buildings and in small and large scale urban environments. It comprises unitary vehicles that may move in different directions: horizontal, steeply sloped and also vertical tracks, thanks to novel traction wheel assemblies that roll on carefully designed wheel tracks. The system's cabin maintains the horizontal level / position regardless of the changes of track direction or slanting thanks to pendulum based automatic level control and may rotate up to 180° under normal conditions and even a full 360° turn respect to the wheel assembly in space restricted positions. The cabin is mounted on a cantilever, thereby displacing its center of gravity respect of the wheel guides. Thus, a lever action is established, which presses the wheels against the wheel tracks and therefore enough frictional resistance is obtained so as to avoid wheel slippage on the wheel tracks. The vehicles are moved by non-polluting, electric drives that move and stop them with high energy savings. The vehicle runways are designed taking in account safety features against fire hazards. Several vehicles may be used at the same time and on the same track and may run individually or in groups, conforming a train. The system allows for vehicles to be parked in bypassed positions or else they may be disengaged from the convoy to be used individually.
Owner:SERRANO JORGE

Aircraft kinetic landing energy conversion system

A kinetic energy system which transfers the kinetic landing into recoverable electric energy for an aircraft. The system incorporates at least one wheel supporting the aircraft for landing and takeoff coupled with a dynamic functioning motor / generator mounted to and operated by rotation of the wheel to create electrical energy from kinetic energy. An induction shoe structurally connected to the aircraft and electrically connected to the motor / generator, which shoe draws the converted energy from the generator which supplies the load created by the inductively coupled induction shoe to the an ancillary load provided by the resistive heat sink on by the capacitor storage bank. This provides the generator circuit for conversion of the rotational energy of the wheel to electrical energy and creates braking drag. In exemplary embodiments, the system employs an energy storage system acting as the load to store electrical potential energy created by the generator. Additionally, the generator is employable as a motor, receiving energy from the storage system for traction power to the associated aircraft wheel. An induction grid or a surface mounted conductive layer mounted into or onto a runway is employed for transferring energy to and from the motor / generator.
Owner:THE BOEING CO

Aircraft with Integrated Lift and Propulsion System

A vertical take off and landing (VTOL) aircraft is designed to be so efficient that it can be commercially competitive with runway dependent aircraft operating in a range of 100 to 1000 miles. Improvements include a high efficiency tilting rotor and wing design that enable both vertical takeoff and efficient high speed cruising, a high aspect ratio wing, and a variable speed propulsion system that is efficient in both hover and cruise flight. Preferred aircraft use thin inboard and outboard wings, thin rotor blades, and use efficient lightweight design to achieve unusually low empty weight fraction. Inventive methods include utilization of advanced design and analysis techniques, which allow for accurate prediction of an aircraft's physical behavior.
Owner:KAREM ABE

Landing gear method and apparatus for braking and maneuvering

Aircraft landing gear comprised of a wheel hub motor / generator disks stack, includes alternating rotor and stator disks mounted with respect to the wheel support and wheel. The invention can provide motive force to the wheel when electrical power is applied, e.g. prior to touch-down, thus decreasing the difference in relative velocities of the tire radial velocity with that of the relative velocity of the runway and reducing the sliding friction wear of the tire. After touchdown the wheel hub motor / generator may be used as a generator thus applying a regenerative braking force and / or a motorized braking action to the wheel. The energy generated upon landing maybe dissipated through a resistor and / or stored for later use in providing a source for motive power to the aircraft wheels for taxiing and ground maneuvers of the aircraft. Methods and apparatuses for nose gear steering and ABS braking using the disclosed invention are described.
Owner:DELOS AEROSPACE

Aircraft-centered ground maneuvering monitoring and alerting system

A monitoring system for alerting operators of aircraft or other vehicles when they are approaching a geographical feature of interest, such as a runway, taxiway or other aircraft. The system includes a database having at least one geo-referenced chart, a processor, a positioning system configured to identify a number of aircraft or other vehicle operational parameters and transmit that data to the processor, and a display unit configured to display the present position of the aircraft on the geo-referenced chart. After receiving the operational parameters, the processor identifies a virtual containment zone centered about the aircraft or vehicle. The processor further monitors the position of the aircraft or other vehicle relative to any geographical features of interest and determines whether at least a portion of a geographical feature is located within the containment area. If such a condition is detected, a notification is generated and presented to the operator who may respond accordingly.
Owner:UNIVERSAL AVIONICS SYST

Device enabling persons, including handicapped persons to practise roller skating, skateboarding, ice skating, skiing, horse-riding and swimming, without falling or sinking

The invention concerns a device enabling able-bodied or handicapped persons to learn to practise roller skating, skateboarding, ice skating, skiing on snow or artificial track. The invention is characterized in that it comprises supports consisting of posts supporting the cross members beneath which are maintained rails whereon can move freely rolling wheeled carriages whereto are attached the straps secured to the harnesses, obstacles arranged or provided beneath the rails, seats provided each with two hollow pockets with inclined base enabling the persons to put on their skates and fix their strap to the harness, signalling strips arranged on the floor serving to guide visually impaired or blind persons, a device including a sensor triggering a sound signal whereof the tone is different depending on the type of the obstacle, carriages with inclined side panels retaining the straps secured to the fastening points of the harnesses.
Owner:LEBLOND MICHELE

Integrated approach navigation system, method, and computer program product

Systems, computer program products, and methods for displaying navigation performance based flight path deviation information during the final approach segment to a runway and during landing of non-precision flight modes are provided. Improved graphical depictions of navigation performance based flight path deviation information provide pilots and flight crew members with clear, concise displays of the dynamic relationship between ANP and RNP, mode and aspect of flight and related procedures, intersecting flight paths, and current actual flight path deviation from a predefined flight path during the final approach segment to a runway and during landing. For example, an enhanced IAN display may include NPS-type deviation scales to show RNP / ANP relationships and predetermined RNP markers to alert the pilots and flight crew members that the FMC has transitioned from an NPS display for RNAV (LNAV / VNAV) flight procedures to an enhanced IAN display for a non-precision (non-xLS) approach and / or landing.
Owner:THE BOEING CO

Compact foldable ramp

A multi-section ramp hinged longitudinally end-to-end uncurls from a portable mode into an arc of hinged sections in open, or operational mode, each adjacent section pair limited in opening rotation at less than 180 degrees as adjacent section ends come into abutment. In its folded position, more upper ramp sections nest in respective adjacent next lower ramp sections, in a stacked nesting configuration resulting in a tightly compact, mobile unit easily storable in a small volume and transported by hand. Each section comprises a runway in the form of a plate with vertical panels on each runway lateral side extending downward from the runway and with vertical end members on each runway longitudinal end, forming an inverted open box. Longitudinal strengthening ribs run between end members and pass into aligned slots in more inner runway sections upon ramp folding so inner sections can nest more within the larger sections without impacting the ribs.
Owner:GRIFFIN STEPHEN S

System and method for performing 4-dimensional navigation

A system and method are disclosed for computing a vehicle's motion in four dimensions (e.g., three spatial dimensions and time) and reliably predicting the vehicle's arrival time at a predetermined location, by providing a graphical display to an operator of the vehicle's progress that enables the operator to adjust the vehicle's movement and achieve the desired arrival time. Specifically, a system and method are disclosed for computing the movement of an aircraft in four dimensions, predicting its arrival time at a predetermined waypoint, and displaying (in a highly intuitive format) the aircraft's progress in achieving that desired arrival time. The pilot can then adjust the movement (e.g., speed) of the aircraft in accordance with the parameter(s) displayed, in order to achieve the desired arrival time. Thus, for example, numerous aircraft could be scheduled to arrive at a specific final approach waypoint at a predetermined rate (e.g., one aircraft per minute), which would enable the traffic controllers to optimize runway traffic without having to stack the aircraft in holding patterns and thereby waste fuel. Notably, although an example of an aircraft navigation and control system and method is disclosed, the system and method can be implemented for any type of vehicle (e.g., aircraft, spacecraft, ship, submarine, bus, train, automobile, etc.) whose operator desires to reach a particular location at a specified time.
Owner:HONEYWELL INT INC

Aircraft synthetic vision system for approach and landing

An aircraft synthetic vision system (100) is provided for increasing data input to a pilot (109) during approach and landing flight operations, and includes a runway assistance landing system (114) and a plurality of databases (106, 108, 110, 112) which may include, for example, a terrain database (106), an obstacle database (112); and a validated runway database (110). The processor (104) detects the likelihood of an error in determining the altitude from at least one of the runway assistance landing system (114), the plurality of databases (106, 108, 110, 112), and identifies the error. The processor (104) further determines augmented coordinates, and a processor (104) generates symbology commands to a first display (116) for displaying a runway environment in response to data provided to the processor (104) from each of the runway assistance landing system (114), the plurality of databases (106, 108, 110, 112), and the processor (104).
Owner:HONEYWELL INT INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products