Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

320 results about "Forward flight" patented technology

Multibody aircrane

InactiveUS20090152391A1Precise and timely point to point transferEfficient powerCargo handling apparatusPassenger handling apparatusLow speedControl line
The MULTIBODY AIRCRANE performs relative positioning, predictive control, and ballast control to achieve very heavy-lifting tasks on land or sea. Such tasks allow station keeping and precise transfer of very heavy payloads between ships underway. This scalable multibody system features three subcomponents: AIRSHIP, SKYCRANE and LOADFRAME. This semi-autonomous system combines aerodynamic (kinetic) and aerostatic (buoyancy force) lift with efficient power and propulsion. During low-speed flight, the Airship and Skycrane are decoupled but linked via a reelable Tether Control Line. Beneath the Skycrane, centered on its hull, a patented NIST (National Institute of Standards and Technology) RoboCrane (featuring a computer controlled six degrees of freedom (DoF) cabling system,) is attached, to precisely suspend and control a Loadframe, with or without payload. During subsonic forward flight, these Airship and Skycrane are coupled as a single airframe (fuselage and delta wing.)
Owner:MCWHIRK BRUCE KIMBERLY

Controlled take-off and flight system using thrust differentials

A manned / unmanned aerial vehicle adapted for vertical takeoff and landing using the same set of engines for takeoff and landing as well as for forward flight. An aerial vehicle which is adapted to takeoff with the wings in a vertical as opposed to horizontal flight attitude which takes off in this vertical attitude and then transitions to a horizontal flight path. An aerial vehicle which controls the attitude of the vehicle during takeoff and landing by alternating the thrust of engines, which are separated in least two dimensions relative to the horizontal during takeoff. An aerial vehicle which uses a rotating platform of engines in fixed relationship to each other and which rotates relative to the wings of the vehicle for takeoff and landing.
Owner:TRANSITION ROBOTICS INC

Quiet vertical takeoff and landing aircraft using ducted, magnetic induction air-impeller rotors

A hover aircraft employs an air impeller engine having an air channel duct and a rotor with outer ends of its blades fixed to an annular impeller disk that is driven by magnetic induction elements arrayed in the air channel duct. The air-impeller engine is arranged vertically in the aircraft frame to provide vertical thrust for vertical takeoff and landing. Preferably, the air-impeller engine employs dual, coaxial, contra-rotating rotors for increased thrust and gyroscopic stability. An air vane assembly directs a portion of the air thrust output at a desired angle to provide a horizontal thrust component for flight maneuvering or translation movement. The aircraft can employ a single engine in an annular fuselage, two engines on a longitudinal fuselage chassis, three engines in a triangular arrangement for forward flight stability, or other multiple engine arrangements in a symmetric, balanced configuration. Other flight control mechanisms may be employed, including side winglets, an overhead wing, and / or air rudders or flaps. An integrated flight control system can be used to operate the various flight control mechanisms. Electric power is supplied to the magnetic induction drives by high-capacity lightweight batteries or fuel cells. The hover aircraft is especially well suited for applications requiring VTOL deployment, hover operation for quiet surveillance, maneuvering in close air spaces, and long duration flights for continuous surveillance of ground targets and important facilities requiring constant monitoring.
Owner:SANDERS JR JOHN K +3

Vertical take-off and landing (VTOL) aircraft with distributed thrust and control

An aircraft having a vertical take-off and landing (VTOL) propulsion system. The aircraft includes a fuselage, the VTOL propulsion system, at least one forward thruster, a power source used for both the VTOL propulsion system and forward thruster, fore and aft wings and a plurality of spars attached to and spanning the space between the two wings. The VTOL propulsion system includes a plurality of VTOL cells (including a motor, motor controller, and propeller) attached in a spaced relation along each spar. The VTOL cells are used exclusively for vertical flight or hovering and are powered down as the aircraft develops forward flight velocity and corresponding wing lift. During forward flight the VTOL propellers are articulated to allow the aircraft to take on a low drag configuration. The present invention is suitable for use in manned or un-manned aircraft of any scale.
Owner:VANDERMEY TIMOTHY +1

Vertical take-off and landing (VTOL) aircraft with distributed thrust and control

An aircraft having a vertical take-off and landing (VTOL) propulsion system. The aircraft includes a fuselage, the VTOL propulsion system, at least one forward thruster, a power source used for both the VTOL propulsion system and forward thruster, fore and aft wings and a plurality of spars attached to and spanning the space between the two wings. The VTOL propulsion system includes a plurality of VTOL cells (including a motor, motor controller, and propeller) attached in a spaced relation along each spar. The VTOL cells are used exclusively for vertical flight or hovering and are powered down as the aircraft develops forward flight velocity and corresponding wing lift. During forward flight the VTOL propellers are articulated to allow the aircraft to take on a low drag configuration. The present invention is suitable for use in manned or un-manned aircraft of any scale.
Owner:VANDERMEY TIMOTHY +1

Three Wing, Six Tilt-Propulsion Units, VTOL Aircraft

A vertical takeoff and landing aircraft having a fuselage with three wings and six synchronously tilt-able propulsion units, each one mounted above, below, or on each half of the aforementioned three wings. The propulsion units are vertical for vertical flight, and horizontal for forward flight. The aircraft wings are placed such that the rear wing is above the middle wing which is placed above the front wing. The placement of each of the propulsion units relative to the center of gravity of the aircraft about the vertical axis inherently assures continued stability in vertical flight mode, following the loss of thrust from any one propulsion unit. The placement of the propulsion units, viewing the aircraft from the front, is such that each propulsion units' thrust wake does not materially disturb the propulsion unit to its rear. When engine driven propellers or rotors are utilized, flapped wing panels are attached outboard of the forward and / or rearward propulsion units to provide yaw control during vertical flight.
Owner:OLIVER VTOL

System and method for utilizing stored electrical energy for VTOL aircraft thrust enhancement and attitude control

ActiveUS20070057113A1Maximize engine efficiencyMaximize performance capabilityAircraft navigation controlPower plant arrangements/mountingCombustionAttitude control
A system and method are provided for ashort take-off and landing / vertical take-off and landing aircraft that stores required take-off power in the form of primarily an electric fan engine, and secondarily in the form of an internal combustion engine, wherein the combined power of the electric fan and internal combustion engines can cause the STOL / VTOL A / C to take-off in substantially less amount of time and space than other STOL / VTOL A / C, and further wherein the transition from vertical to horizontal thrust is carefully executed to rapidly rise from the take-off position to a forward flight position, thereby minimizing the necessity for a larger electric fan engine.
Owner:AURORA FLIGHT SCI CORP

Gas-powered tip-jet-driven tilt-rotor compound VTOL aircraft

ActiveUS7147182B1Easily take over powering of both rotorLarge thrust augmentation ratioPropellersPump componentsJet engineControl power
A tilt-rotor compound VTOL aircraft has a multiple-flow thrust generator(s) comprising a gas-powered tip-jet driven rotor(s) having a thrust-augmentation ratio of at least two; that tilts about the aircraft's pitch axis wherein the rotor's plane of rotation is substantially horizontal for VTOL operations and the rotor's plane of rotation is substantially vertical forward flight operations. A relatively small fixed-wing sustains the aircraft during forward flight. Compressed exhaust gas from the fan-jet engine(s) is ducted to a manifold having valves which control power to the multiple-flow thrust generator(s) and to the jet exhaust nozzle(s) as supplemental thrust for forward propulsion and yaw control. The manifold also serves to distribute compressed gas to the dead engine side of the aircraft in the event of a dead engine emergency, and to reaction jets for attitude control during VTOL operations. Thus this tilt-rotor aircraft is more efficient, faster, immensely lighter, less complex and less expensive to purchase and maintain than its shaft-driven counterparts.
Owner:FLANIGAN KENNETH WARREN

Ducted fan VTOL vehicles

A VTOL vehicle comprising a fuselage having forward and aft propulsion units, each propulsion unit comprising a propeller located within an open-ended duct wall wherein a forward facing portion of the duct wall of at least the forward propulsion unit is comprised of at least one curved forward barrier mounted for horizontal sliding movement to open the forward facing portion to thereby permit air to flow into the forward facing portion when the VTOL vehicle is in forward flight.
Owner:URBAN AERONAUTICS

Hybrid Propulsion Vertical Take-Off and Landing Aircraft

ActiveUS20170203839A1Out of synchronizationAircraft power plant componentsWingsRotary wingFuselage
A hybrid propulsion aircraft is described having a distributed electric propulsion system. The distributed electric propulsion system includes a turbo shaft engine that drives one or more generators through a gearbox. The generator provides AC power to a plurality of ducted fans (each being driven by an electric motor). The ducted fans may be integrated with the hybrid propulsion aircraft's wings. The wings can be pivotally attached to the fuselage, thereby allowing for vertical take-off and landing. The design of the hybrid propulsion aircraft mitigates undesirable transient behavior traditionally encountered during a transition from vertical flight to horizontal flight. Moreover, the hybrid propulsion aircraft offers a fast, constant-altitude transition, without requiring a climb or dive to transition. It also offers increased efficiency in both hover and forward flight versus other VTOL aircraft and a higher forward max speed than traditional rotorcraft.
Owner:AURORA FLIGHT SCI CORP

Compound helicopter

The compound helicopter is a hybrid combination of a helicopter and a fixed wing aircraft. A conventional helicopter is modified with a nose-mounted tractor propeller to provide thrust for forward flight. Wings are added to provide lift during forward flight. With the propeller providing thrust and the wings lift during forward flight, the helicopter rotor blades are unloaded during cruising flight to allow increased forward speed by avoiding limitations of conventional helicopters, including retreating rotor blade stall and maximum rotor blade tip speeds. A single powerplant drives both the main rotor and the nose-mounted propeller. The compound helicopter employs high aspect ratio wings with large flaps that may be extended to reduce vertical drag during vertical flight and hovering operations.
Owner:LOPER ARTHUR W

Remotely controlled vtol aircraft, control system for control of tailless aircraft, and system using same

A manned / unmanned aerial vehicle adapted for vertical takeoff and landing using the same set of engines for takeoff and landing as well as for forward flight. An aerial vehicle which is adapted to takeoff with the wings in a vertical as opposed to horizontal flight attitude which takes off in this vertical attitude and then transitions to a horizontal flight path. An aerial vehicle which controls the attitude of the vehicle during takeoff and landing by alternating the thrust of engines, which are separated in at least two dimensions relative to the horizontal during takeoff, and which may also control regular flight in some aspects by the use of differential thrust of the engines. A tailless airplane which uses a control system that takes inputs for a traditional tailed airplane and translates those inputs to provide control utilizing non-traditional control methods.
Owner:SINHA PRANAY +5

Tri-Rotor Aircraft Capable of Vertical Takeoff and Landing and Transitioning to Forward Flight

Systems, methods, and devices provide a vehicle, such as an aircraft, with rotors configured to function as a tri-copter for vertical takeoff and landing (“VTOL”) and a fixed-wing vehicle for forward flight. One rotor may be mounted at a front of the vehicle fuselage on a hinged structure controlled by an actuator to tilt from horizontal to vertical positions. Two additional rotors may be mounted on the horizontal surface of the vehicle tail structure with rotor axes oriented vertically to the fuselage. For forward flight of the vehicle, the front rotor may be rotated down such that the front rotor axis may be oriented horizontally along the fuselage and the front rotor may act as a propeller. For vertical flight, the front rotor may be rotated up such that the front rotor axis may be oriented vertically to the fuselage, while the tail rotors may be activated.
Owner:NASA

High Performance VTOL Aircraft

The present disclosure relates to a high performance Vertical Takeoff and Landing (VTOL) aircraft for executing hovering flight, forward flight, and transitioning between the two in a stable and efficient manner. The VTOL aircraft provides a highly stable, controllable and efficient VTOL aircraft. The preferred comprises: (1) a pusher propeller configuration with strategic placement which maximizes the effective use of thrust, (2) four propellers which allow for the highly-controllable and mechanically simple control methods used in multirotor aircraft, (3) electric motors which create mechanically simple, lightweight and reliable operation, (4) and a tandem wing configuration which is stable, controllable and efficient in both hovering and forward flight. The VTOL aircraft is capable of full runway, short runway or vertical takeoffs or landings, having unobstructed forward view for camera and sensor placement; and providing a compact, mechanically simple and low-maintenance VTOL aircraft design.
Owner:HYUNDAI MOTOR CO LTD +1

Three-wing, six tilt-propulsion unit, vtol aircraft

A vertical takeoff and landing aircraft having a fuselage with, preferably, three wings and six synchronously tilt-able propulsion units, each one mounted above, below, or on each half of the aforementioned three wings. The propulsion units are oriented vertically for vertical flight and horizontally for forward flight. Each propulsion unit comprises a propeller having a plurality of blades, where the pitch angle associated with the distal end of each blade and the proximal end of each blade are independently adjustable. As such, each of the propellers can be adjusted to exhibit a first blade pitch angle distribution optimized for vertical flight and a second blade pitch angle distribution optimized for forward flight.
Owner:OLIVER VTOL

Ducted Fan Vtol Vehicles

A vehicle including a fuselage having a longitudinal axis and a transverse axis, two Ducted Fan lift-producing propellers carried by the fuselage on each side of the transverse axis, and a body formed in the fuselage between the lift-producing propellers. Many variations are described enabling deflection and affection of flow streams and reduction of drag and momentum drag which improve speed and forward flight of the vehicle. Also described are unique features applicable in any single or multiple ducted fans and VTOL vehicles.
Owner:URBAN AERONAUTICS

Aerodynamically Actuated Thrust Vectoring Devices

A vehicle includes a wing and a control surface pivotably coupled to the wing and configured to pivot about a range of motion. A propulsor is coupled to the control surface and configured to rotate between a first position associated with a hover flight mode and a second position associated with a forward flight mode. The propulsor is aerodynamically actuated between the first position and the second position due to aerodynamics about the wing. The propulsor may rotate from an initial flight mode, such as a takeoff mode, to a second flight mode, such as a forward flight mode.
Owner:NASA

Unloaded lift offset rotor system for a helicopter

A rotor system (12) for a helicopter (10) includes a rotating shaft (82). A gimbaled hub assembly (56) is coupled to the rotating shaft (82). Rotating blades (24) and non-rotating blades (33) are coupled to the gimbaled hub assembly (56). The non-rotating blades (33) provide lift for the helicopter (10) in forward flight unloading the rotating blades. The rotating and non-rotating blades (24, 33) provide equal and opposite rolling moments for lift offset operation.
Owner:THE BOEING CO

Vtol aerial vehicle

A vertical take off and landing (VTOL) aircraft, which may be a UAV aircraft, is disclosed. The VTOL is capable of vertical takeoff and landing, hovering and traveling of slow speeds. In addition the VTOL permits high-speed forward flight that allows for increasing the range of the aircraft.
Owner:FRONTLINE AEROSPACE

Control system and strategy for tail sitter

A tail sitter aircraft is capable of forward flight and hover operations. The tail sitter aircraft includes a wing and first and second prop-nacelles supportively disposed on the wing. Each of the first and second prop-nacelles includes an articulable rotor, which is rotatable about variable rotational axes and which includes blades that are collectively and cyclically controllable in both forward flight and hover regimes.
Owner:SIKORSKY AIRCRAFT CORP

Gas-powered tip-jet-driven compound VTOL aircraft

InactiveUS7275711B1Smooth transitionHigh thrust augmentation ratioPropellersRotocraftAttitude controlFlight vehicle
A compound Vertical TakeOff and Landing (VTOL) aircraft. In a specific embodiment, the VTOL aircraft includes a gas-powered tip-jet driven rotary-wing and a fixed-wing that is capable of providing necessary lift to the aircraft during certain forward-flight regimes so that lift from the rotary-wing is not required. This enables slowing of the rotor, thereby reducing drag during forward flight and enabling flight above and below mu-1. Valves and accompanying ducting are employed to control compressed gas flow to the rotary-wing. Various reaction jets are employed for attitude control during VTOL and transition operations. The aircraft further includes a jet exhaust nozzle to provide forward thrust to facilitate forward flight.
Owner:FLANIGAN KENNETH WARREN

Thrust vectoring

Thrust vectoring enhances aircraft and spacecraft maneuverability. The propulsion systems of aircraft, using gas turbine engines, and spacecraft, using solid or liquid rockets, generate compressed gases that are directed through a nozzle to generate forward thrust. This patent describes opening ports to release gases from aircraft and spacecraft in a direction other than the direction of forward propulsion. By altering the direction of gas flows leaving the craft pitch, roll, yaw and attitude control is obtained. To control gas flow from ports a variable throat thrust vectoring nozzle is described. Independent operation of ports, rotational nozzles, laterally moving flaps and rotational vanes assists the thrust vectoring of gases leaving aircraft or spacecraft ports. The ability to direct gases enhances maneuverability during vertical takeoff and landing, forward flight and space flight.
Owner:DICKAU JOHN EUGENE

Multibody aircrane

This invention performs relative positioning, predictive control, and ballast control to achieve very heavy-lifting tasks on land or sea. Such tasks allow station keeping and precise transfer of very heavy payloads between ships underway. This scalable multibody system features three subcomponents: Airship, Skycrane and Loadframe. This semi-autonomous system combines aerodynamic (kinetic) and aerostatic (buoyancy force) lift with efficient power and propulsion. During low-speed flight, the Airship and Skycrane are decoupled but linked via a reelable Tether Control Line. Beneath the Skycrane, centered on its hull, a patented NIST (National Institute of Standards and Technology) RoboCrane, featuring a computer controlled six degrees of freedom (DoF) cabling system, is attached, to precisely suspend and control a Loadframe, with or without payload. During subsonic forward flight, these Airship and Skycrane are coupled as a single airframe: fuselage and delta wing.
Owner:MCWHIRK BRUCE KIMBERLY

Ducted Fan Vtol Vehicles

A vehicle including a fuselage having a longitudinal axis and a transverse axis, two Ducted Fan lift-producing propellers carried by the fuselage on each side of the transverse axis, and a body formed in the fuselage between the lift-producing propellers. Many variations are described enabling deflection and affection of flow streams and reduction of drag and momentum drag which improve speed and forward flight of the vehicle. Also described are unique features applicable in any single or multiple ducted fans and VTOL vehicles.
Owner:URBAN AERONAUTICS

V/STOL biplane aircraft

InactiveUS6848649B2Reducing ducted fan outlet airflow velocityReduce loadAircraft navigation controlAircraft stabilisationHigh resistanceDrivetrain
The present invention is a 2 passenger aircraft capable of vertical and conventional takeoffs and landings, called a jyrodyne. The jyrodyne comprises a central fuselage with biplane-type wings arranged in a negative stagger arrangement, a horizontal ducted fan inlet shroud located at the center of gravity in the top biplane wing, a rotor mounted in the shroud, outrigger wing support landing gear, a forward mounted canard wing and passenger compartment, a multiple vane-type air deflector system for control and stability in VTOL mode, a separate tractor propulsion system for forward flight, and a full-span T-tail. Wingtip extensions on the two main wings extend aft to attach to the T-tail. The powerplants consist of two four cylinder two-stroke reciprocating internal combustion engines. Power from the engines is distributed between the ducted fan and tractor propeller through the use of a drivetrain incorporating two pneumatic clutches, controlled by an automotive style footpedal to the left of the rudder pedals. When depressed, power is transmitted to the ducted fan for vertical lift. When released, power is transmitted to the tractor propeller for forward flight. The aircraft can also takeoff and land in the conventional manner with a much larger payload, and is easily converted to amphibious usage. Landing gear is a bicycle arrangement with outriggers. The aircraft combines twin engines, heavy-duty landing gear, controlled-collapse crashworthy seats with a low stall speed and high resistance to stalls to eliminate any region of the flight regime where an engine or drivetrain failure could cause an uncontrollable crash.
Owner:CHURCHMAN CHARLES GILPIN

Methods and systems for detecting forward obstacles

Methods and apparatus for detecting obstacles in the flight path of an air vehicle are described. The air vehicle utilizes a radar altimeter incorporating a forward looking antenna and an electronic digital elevation map to provide precision terrain aided navigation. The method comprises determining a position of the air vehicle on the digital elevation map, selecting an area of the digital elevation map in the flight path of the air vehicle, based at least in part on the determined air vehicle position, and scanning the terrain representing the selected map area with the forward looking antenna. The method also comprises combining the digital elevation map data for the selected map area with radar return data for the scanned, selected area and displaying the combined data to provide a representation of the terrain and obstacles in the forward flight path of the air vehicle.
Owner:HONEYWELL INT INC

Three-wing, six tilt-propulsion unit, VTOL aircraft

A vertical takeoff and landing aircraft having a fuselage with, preferably, three wings and six synchronously tilt-able propulsion units, each one mounted above, below, or on each half of the aforementioned three wings. The propulsion units are oriented vertically for vertical flight and horizontally for forward flight. Each propulsion unit comprises a propeller having a plurality of blades, where the pitch angle associated with the distal end of each blade and the proximal end of each blade are independently adjustable. As such, each of the propellers can be adjusted to exhibit a first blade pitch angle distribution optimized for vertical flight and a second blade pitch angle distribution optimized for forward flight.
Owner:OLIVER VTOL

Ducted fan VTOL vehicles

A vehicle including a fuselage having a longitudinal axis and a transverse axis, two Ducted Fan lift-producing propellers carried by the fuselage on each side of the transverse axis, and a body formed in the fuselage between the lift-producing propellers. Many variations are described enabling deflection and affection of flow streams and reduction of drag and momentum drag which improve speed and forward flight of the vehicle. Also described are unique features applicable in any single or multiple ducted fans and VTOL vehicles.
Owner:URBAN AERONAUTICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products