Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

581results about "Influencers by generating vortices" patented technology

Subsonic aircraft with backswept wings and movable wing tip winglets

InactiveUS6345790B1Optimized aerodynamic streamline contourRaise the ratioInfluencers by generating vorticesAircraft stabilisationWingspanAirplane
A subsonic aircraft having backswept lifting wings is equipped with individually rotatable winglets at the wing tips thereof, in order to reduce drag during cruise flight, to minimize the dangers posed by wing tip vortices to following aircraft during take-off and landing, and to minimize the total wingspan during ground operations, with respective different positions of the winglets. A streamline-shaped rotation body made up of at least two individually rotatably supported rotation segments is mounted on the wing tip of each lifting wing. A respective winglet is mounted on each respective rotation segment. Each rotation segment with its associated winglet is individually rotatable about a rotation axis of the rotation body extending substantially parallel to the aircraft lengthwise axis. Thereby, each winglet is individually pivotable to any selected pivot angle relative to a horizontal plane extending through the rotation axis. Each winglet and its associated rotation segment is rotatable through an angular range between maximum end limits of at least +90° (vertically upward) and at least -90° (vertically downward) relative to the horizontal plane.
Owner:DAIMLER CHRYSLER AEROSPACE AIRBUS

System and method for actively changing an effective flow-through area of an inlet region of an aircraft engine

An active effective flow-through area control system includes an upstream wall-flow perturber and a downstream wall-flow perturber situated in an inlet region of an aircraft engine. The downstream wall-flow perturber is positioned downstream from the upstream wall-flow perturber. The upstream and downstream wall-flow perturbers are configured to generate and trap at least one region of separated, vortical flow in the airflow through the inlet region. A method, for actively changing an effective flow-through area of an inlet region of an aircraft engine, includes creating at least one region of separated, vortical flow in an airflow passage defined by the inlet region. The method further includes trapping the region of separated, vortical flow in the airflow passage. The region of separated, vortical flow partially obstructs a main inlet airflow.
Owner:GENERAL ELECTRIC CO

Controllable winglets

InactiveUS20080308683A1Wing bending loadMaximizing airborne wingspanInfluencers by generating vorticesWingsShape-memory alloyVariable geometry
Systems and methods for providing variable geometry winglets to an aircraft are disclosed. In one embodiment, a winglet includes a base portion configured to attach to a wing. The winglet further includes a body portion. In turn, the body portion includes at least one of a deflectable control surface, a shape memory alloy (SMA) bending plate, and a SMA torque tube. The base portion is configured to attach to the wing such that the body portion projects at an upward angle from the wing.
Owner:THE BOEING CO

Rapidly convertible hybrid aircraft and manufacturing method

A hybrid fixed wing aircraft converts into a roadworthy vehicle in a matter of seconds therefore operating efficiently in both air and ground transportation systems. The single piece wing is mounted on a skewed pivot that is on the lower portion of the fuselage and is operated by a pushbutton operating system. The aircraft includes telescopic twin boom tail design that when extended allows good pitch stability and damping. The aircraft's wing area may be increased with additional telescopic wing tip segments. This allows an increase in aspect ratio, hence improving efficiency at high loads. This feature will also creates a reduction in induced drag at cruise speed by simply retracting the tips in flight. The vehicle has a unique synchronized control system that switches from flight to ground mode without input from the operator, thereby providing a natural interface for the operator.
Owner:EASTER WILLIAM CRAIG

Application of conformal sub boundary layer vortex generators to a foil or aero/ hydrodynamic surface

A method of improving aerodynamic performance of foils by the application of conformal, low drag vortex generators. A film of erosion protection material or other conformal material is placed on the foil to provide a medium for the incorporation of planform edge vortex generators. The form edge is shaped to achieve submerged vortex generating shapes of chevron or ogival planforms, extending primarily chordwise on the foil surface. The vortex generators promote improved boundary layer dynamics by mixing free stream flow into the boundary layer while minimising separation and fluid losses. At the trailing edge, the shape formed with the chevrons applied apex forward, acts as a vented gurney tab series and additionally as disruptors to the Von Karman Street wake, delaying sheet rollup into the tip vortice.
Owner:IRELAND PETER

Apparatus and method for the control of trailing wake flows

A system and method for dissipating vortices that form at the wingtips on aircraft and from other airfoils. A jet air stream is discharged in a location at or proximate to the outer end portion of the airfoil into the vortex flow, and the jet air stream is moved cyclically back and forth. The cyclic movement can be at lower or higher frequencies to alleviate at least in part intensity of the vortex or accelerate instability of the vortex which leads to vortex dissipation.
Owner:THE BOEING CO

Vtol aerial vehicle

A vertical take off and landing (VTOL) aircraft, which may be a UAV aircraft, is disclosed. The VTOL is capable of vertical takeoff and landing, hovering and traveling of slow speeds. In addition the VTOL permits high-speed forward flight that allows for increasing the range of the aircraft.
Owner:FRONTLINE AEROSPACE

Flexible airflow separator to reduce aerodynamic noise generated by a leading edge slat of an aircraft wing

A slat is selectively extended from a main wing body, with a concave rear surface of the slat facing a convex forward nose surface of the wing body, with a slat gap therebetween. At least one row of flexible bristles is movably arranged relative to the lower rear edge of the slat, to flexibly protrude up into the slat air gap. At least one row of flexible bristles is movably arranged along the upper rear edge of the slat to extend rearwardly over the slat air gap and the upper surface of the main wing body. The flexible bristles are flexibly self-positioning and self-contouring due to the aerodynamic forces acting thereon, to improve the air flow conditions through the slat gap, separate the slat gap airflow from an entrapped eddy vortex on the concave rear surface of the slat, and thereby reduce the aerodynamic noise generated along the slat gap.
Owner:DEUTSCHES ZENTRUM FUER LUFT & RAUMFAHRT EV +1

Aerodynamic noise reducing structure for aircraft wing slats

A hollow expandable and contractible displacement element is secured onto the concave rear surface of a slat facing the leading edge of an aircraft wing. A bleed air line supplies engine bleed air into the hollow displacement element to selectively expand or contract the displacement element, which is preferably elastically expandable. When the slat is extended, the displacement element is expanded to fill-out the concave cavity on the rear surface of the slat so as to prevent formation of a vortex in the slat air gap and thereby to reduce aero-acoustic noise. When the slat is retracted, the displacement element is contracted to be conformingly accommodated in the sickle-shaped space between the slat and the leading edge of the wing.
Owner:AIRBUS OPERATIONS GMBH

System and method of vortex wake control using vortex leveraging

This invention relates to a system and method for reducing the primary vortex wake structure generated by a lifting body mounted on an object moving through a fluid. This is achieved by first, altering the generated initial vortex wake to make it vulnerable to rapid breakup; and, second, producing disturbances to this wake with secondary vortices from auxiliary lifting surfaces, called vortex leveraging tabs, to instigate this breakup. This invention relates to various fields of uses to include vortices generated by any type of lifting body moving through a fluid to include aircraft and watercraft, such as surface vessels and submarines.
Owner:CONTINUUM DYNAMICS

Retractable vortex generator

ActiveUS7878457B2Reduction of drag and ice accumulationInfluencers by generating vorticesAircraft stabilisationAcute angleActuator
A flow control device is disclosed including a flow control surface over which fluid is designed to flow in a predetermined direction. Vortex generators are associated with the flow control surface. Each respective vortex generator has a pivot axis that forms an acute angle with respect to the predetermined direction and is capable of being positioned in both of an extended state, in which the respective vortex generators function to create a swirling fluid flow, and a retracted state, in which the respective vortex generators are pivoted via the pivot axis so as to lie adjacent to the flow control surface. An actuator is associated with each of the vortex generators, each actuator adapted to position the associated vortex generator between the extended and retracted states. The flow control device is disclosed to be used in tiltrotor vehicles.
Owner:TEXTRON INNOVATIONS

Blended winglet

A capped winglet comprising a helical portion having a smooth vertical curvature of 180°±approximately 20° from the plane of the unbounded end of a wing, and a generally planar cap contiguous with the helical portion of the winglet at the end of its curvature away from the wing, the cap having a free inboard end and a chord tapered toward the free end.
Owner:ALFORD JR LIONEL D +1

Surface flow diverting and static charging ducted pores on wing or blade tip to reduce wake and BVI noise

InactiveUS20070252047A1Promoting interlayer movementInfluencers by generating vorticesWing shapesElectricityLeading edge
Air pressure distribution for airfoil lower and upper surfaces is utilized to divert airflow using ducts formed in space-curve shapes placed inside the airfoil volume, through span-wise located inlets from high pressure areas on the airfoil lower surface near the leading edge and through chord-wise spaced inlets on the side face of the airfoil wing tip correspondingly to the side face of the airfoil wing tip through chord-wise spaced outlets on the side face of the airfoil wing tip and to span-wise located outlets to the low pressure areas on the airfoil upper surface. Triboelectric materials on the wing surfaces are employed to static charge the air in drag. Inside the ducts, the employment of either triboelectric linings and materials, or HV-supplied electrodes, or both, help to static charge the diverted air flow to and from the airfoil wing tip side face to diffuse wing tip vortex core early.
Owner:PAL ANADISH KUMAR

Apparatus and method for use on aircraft with spanwise flow inhibitors

An aircraft can include a wing with a leading edge and a trailing edge. The wing has a main body and movable control surfaces coupled to the main body. The wing generates lifting forces when the aircraft is in flight. The movable control surfaces can be used to control the generated lifting forces. A spanwise flow inhibitor extends from the outer wingtip of the wing. At least one gurney flap extends generally downwardly from at least a portion of the trailing edge of the wing. The flap at least partially counteracts a change in center of lift attributable to the spanwise flow inhibitor.
Owner:DESROCHE ROBERT J

Flexible airflow separator to reduce aerodynamic noise generated by a leading edge slat of an aircraft wing

A slat is selectively extended from a main wing body, with a concave rear surface of the slat facing a convex forward nose surface of the wing body, with a slat gap therebetween. At least one row of flexible bristles is movably arranged relative to the lower rear edge of the slat, to flexibly protrude up into the slat air gap. At least one row of flexible bristles is movably arranged along the upper rear edge of the slat to extend rearwardly over the slat air gap and the upper surface of the main wing body. The flexible bristles are flexibly self-positioning and self-contouring due to the aerodynamic forces acting thereon, to improve the air flow conditions through the slat gap, separate the slat gap airflow from an entrapped eddy vortex on the concave rear surface of the slat, and thereby reduce the aerodynamic noise generated along the slat gap.
Owner:DEUTSCHES ZENTRUM FUER LUFT & RAUMFAHRT EV +1

Retractable nacelle chine

ActiveUS20100038492A1Minimize aerodynamic dragIncrease in aircraft performanceInfluencers by generating vorticesAircraft stabilisationNacelleAirplane
A retractable chine assembly includes at least one chine which is hingebly mountable to a surface such as of an aircraft having a wing. The chine is preferably configured to be movable between stowed and deployed positions. The aircraft may include an engine nacelle which may be mounted on an underside of the wing. The nacelle may generate a nacelle wake that passes over the wing upper surface at high angles of attack and induces flow separation. The chine is preferably configured such that a vortex generated thereby interacts which the nacelle wake to delay flow separation and stall.
Owner:THE BOEING CO

Method and apparatus for reducing trailing vortices in the wake of an aircraft

Harmful trailing vortices downstream of an aircraft wing are at least partly dissipated by a respective counteracting vortex for each trailing vortex at each wing. An auxiliary counteracting vortex generating flap, preferably in the form of at least part of a delta wing, is journaled to the respective wing in the area of the outer end of a landing flap. The counteracting vortex is imposed on the respective trailing vortex, whereby the trailing vortex is caused to vibrate. The vibration dissipates the trailing vortex at least partially.
Owner:AIRBUS OPERATIONS GMBH

Apparatus for influencing a wing root airflow in an aircraft

An apparatus advantageously influences the wing root airflow along the wing root of an aircraft having a high lift system including leading edge slats provided on the main wings. The apparatus includes a respective vortex generator arranged on the inboard end of each leading edge slat in the area of the wing root, and further includes a respective transition fairing arranged on a separation edge that is let into the leading edge of the wing root and that borders along the inboard edge of the respective slat. The vortex generator is a rigid member fixed to the leading edge slat and may be in the shape of a horn, a disk, or a winglet. The transition fairing may be a rigid member fixed to the wing root along the separation edge, or may be a flexible elastic member that can be inflated to have a variable outer contour. The present system avoids the need of additional independently movable auxiliary flaps, and thus achieves a reduced weight, complexity, and maintenance requirement.
Owner:DAIMLER CHRYSLER AEROSPACE AIRBUS

Airfoil performance modification using synthetic jet actuators

Systems and methods for modifying fluid flowing over solid bodies are provided. A representative system incorporates a vorticity concentration-producing component and a synthetic jet actuator. The vorticity concentration-producing component is disposed on a pressure side of the solid body. The fluid flowing over the solid body remains attached to a surface of the solid body in a vicinity of the vorticity concentration-producing component. The synthetic jet actuator includes a jet housing that incorporates an internal chamber with a volume of fluid and an opening in the jet housing connecting the internal chamber to an external environment having the fluid. The synthetic jet actuator is operative to periodically change the volume within the internal chamber such that a synthetic jet stream comprising a series of fluid vortices is generated and projected in the external environment out from the opening of the jet housing resulting in a reduction in pressure drag of the solid body compared to the pressure drag exhibited by the solid body without operation of the synthetic jet actuator.
Owner:GEORGIA TECH RES CORP

Cylindrical wing tip with helical slot

A device having the form of a cylindrical spiral cavity and / or incorporating a helicoidal slot, making it possible to reduce induced drag and marginal swirl (vortex) and increase drag / lift ratio. Integrated with the wingtip or articulated on the wingtip, it can be adapted for all airfoils, in particular the wings of airplanes and gliders, helicopter blades and the tips or tractor or pusher airscrews, wind-powered generator blades and for surface vessels or submarines where lift or direction is used in triple axis (vertical, horizontal, and yaw) displacement. Used in a reverse configuration (undersurface / upper surface) on high speed land vehicles or racing cars, this device, when secured to the tip of each wing, produces a result inversely proportional to speed. The faster the vehicle is traveling, the less drag it generates and greater its ground adhesion.
Owner:HUGUES CHRISTIAN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products