Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

23911results about "Jet propulsion plants" patented technology

Combined steam and gas turbine engine with magnetic transmission

In a combined steam and gas turbine engine cycle, a combustion chamber is made durable against high pressure and enlarged in length to increase the operation pressure ratio, without exceeding the heat durability temperature of the system while increasing the fuel combustion gas mass flow four times as much as the conventional turbine system and simultaneously for greatly raising the thermal efficiency of the system and specific power of the combined steam and gas turbine engine.Water pipes and steam pipes are arranged inside the combustion chamber so that the combustion chamber can function as a heat exchanger and thereby convert most of the combustion thermal energy into super-critical steam energy for driving a steam turbine and subsequently raising the operation pressure ratio and the thermal efficiencies of the steam turbine cycle and gas turbine cycle. The combustion gas mass flow can be also increased by four times as much as the conventional turbine system (up to the theoretical air to fuel ratio) and the thermal efficiency and the specific power of the gas turbine cycle are considerably increased.Further, the thermal efficiency of the combined system is improved by installing a magnetic friction power transmission system to transmit the power of the system to outer loads.
Owner:TANIGAWA HIROYASU +1

Coupling system for a star gear train in a gas turbine engine

A star gear train for use in a gas turbine engine includes a sun gear, a ring gear, a plurality of star gears and a coupling system. The sun gear is rotatable by a shaft. The ring gear is secured to a ring gear shaft. Each of the plurality of star gears is rotatably mounted in a star carrier and meshes with the sun gear and the ring gear. The coupling system comprises a sun gear flexible coupling, a carrier flexible coupling and a deflection limiter. The sun gear flexible coupling connects the sun gear to the shaft. The carrier flexible coupling connects the carrier to a non-rotating mechanical ground. The deflection limiter is connected to the star carrier to limit excessive radial and circumferential displacement of the star gear train.
Owner:RTX CORP

Geartrain coupling for a turbofan engine

Molybdenum disulfide (MoS2) is used as a journal coating for a gearing system. A particular application is the planetary gear system of a geared turbofan engine. Particularly advantageous coatings are deposited via physical vapor deposition (PVD) techniques.
Owner:RAYTHEON TECH CORP

Epicyclic gear train integral sun gear coupling design

A coupling system for connecting a sun gear to a shaft within a planetary gear train, includes a sun gear coupling connecting the sun gear to the shaft. The sun gear coupling has at least one undulant flexible section joined to an inflexible spindle for accommodating misalignment between the sun gear and the shaft. The flexible section comprises a cylindrical ring having a diameter greater than the diameter of the spindle, and joined to the spindle by two longitudinally spaced apart diaphragms. The juncture between the diaphragms, the ring, and the spindle is curved in cross section on an outer side to improve flexibility and minimize stress concentrations, and the inner sides of the diaphragms are straight edges which result in a non-symmetric contour of the diaphragm walls.
Owner:RTX CORP

Flexible shaft for gas turbine engine

A shaft for a gas turbine engine is provided that includes a first shaft section, a second shaft section, a first flexible linkage, and a second flexible linkage. The first shaft section extends between a forward axial end and an aft axial end along a first axial centerline. The second shaft section extends between a forward axial end and an aft axial end along a second axial centerline. The first flexible linkage includes a bridge section connected between a first diaphragm and a second diaphragm. The first diaphragm is connected to the aft axial end of the first shaft section. The second diaphragm is connected to the forward axial end of the second shaft section. The second flexible linkage includes a diaphragm and a hub. The second flexible linkage diaphragm cantilevers radially outwardly from an inner radial end to an outer radial end, and is connected to the aft axial end of the second shaft section. The hub is connected to the outer radial end of the second flexible linkage diaphragm, and includes an engine shaft coupling connected to the hub.
Owner:RTX CORP

Aircraft with disengageable engine and auxiliary power unit components

Several improvements to an aircraft turbine engine and Auxiliary Power Unit (APU) are disclosed, as well as methods of using these improvements in routine and emergency aircraft operations. The improvements comprise the addition of cockpit-controllable clutches that can be used to independently disconnect the engine's integrated drive generator (IDG), engine driven pump (EDP), fuel pump, and oil pump from the engine gearbox. These engine components may then be connected to air turbines by the use of additional clutches and then powered by the turbines. Similar arrangements are provided for the APU components. Cranking pads, attached to various engine and APU components, are disclosed to provide a means for externally powering the components for testing purposes and to assist with engine and APU start. Detailed methods are disclosed to use the new components for routine ground-testing and maintenance and for the enhancement of flight safety, minimization of engine component damage, and extension of engine-out flying range in the case of an emergency in-flight engine shutdown.
Owner:MOULEBHAR DJAMAL

Aircraft engine with inter-turbine engine frame

An aircraft engine turbine frame includes a first structural ring, a second structural ring disposed co-axially with and radially spaced inwardly of the first structural ring about a centerline axis. A plurality of circumferentially spaced apart struts extend between the first and second structural rings. Forward and aft sump members having forward and aft central bores are fixedly joined to forward and aft portions of the turbine frame respectively. A frame connecting means for connecting the engine to an aircraft is disposed on the first structural ring. The frame connecting means may include a U-shaped clevis. The frame may be an inter-turbine frame axially located between first and second turbines of first and second rotors of a gas turbine engine assembly. An axial center of gravity of the second turbine passes though or very near a second turbine frame bearing supported by the aft sump member.
Owner:GENERAL ELECTRIC CO

Dry 3-way catalytic reduction of gas turbine NOx

A power generation system capable of eliminating NO, components in the exhaust gas by using a 3-way catalyst, comprising a gas compressor to increase the pressure of ambient air fed to the system; a combustor capable of oxidizing a mixture of fuel and compressed air to generate an expanded, high temperature exhaust gas; a gas turbine engine that uses the force of the high temperature gas; an exhaust gas recycle (EGR) stream back to the combustor; a 3-way catalytic reactor downstream of the gas turbine engine outlet which treats the exhaust gas stream to remove substantially all of the NOx components; a heat recovery steam generator (HRSG); an EGR compressor; and an electrical generator.
Owner:GENERAL ELECTRIC CO

Low solidity turbofan

A turbofan includes a row of fan blades extending from a supporting disk inside an annular casing. Each blade includes an airfoil having opposite pressure and suction sides extending radially in span between a root and tip and axially in chord between leading and trailing edges. Adjacent airfoils define corresponding flow passages therebetween for pressurizing air. Each airfoil includes stagger increasing between the root and tip, and the flow passage has a mouth between the airfoil leading edge and the suction side of an adjacent airfoil and converges to a throat aft from the mouth. The row includes no more than twenty fan blades having low tip solidity for increasing the width of the passage throat.
Owner:GENERAL ELECTRIC CO

Staged combustion of a low heating value fuel gas for driving a gas turbine

A process is provided for combusting a low heating value fuel gas in a combustor to drive an associated gas turbine. A low heating value fuel gas feed is divided into a burner portion and a combustion chamber portion. The combustion chamber portion and a combustion air are conveyed into a mixing zone of the combustor to form an air / fuel mixture. The burner portion is conveyed into a flame zone of the combustor through a burner nozzle while a first portion of the air / fuel mixture is conveyed into the flame zone through a burner port adjacent to the burner nozzle. The burner portion and first portion of the air / fuel mixture are contacted in the flame zone to combust the portions and produce flame zone products. The flame zone products are conveyed into an oxidation zone of the combustor downstream of the flame zone while a second portion of the air / fuel mixture is also conveyed into the oxidation zone. The second portion is combusted in the oxidation zone in the presence of the flame zone products to produce combustion products. The combustion products are conveyed into the associated gas turbine and drive the gas turbine.
Owner:MARATHON OIL CO +1

System and method for high efficiency power generation using a carbon dioxide circulating working fluid

The present invention provides methods and system for power generation using a high efficiency combustor in combination with a CO2 circulating fluid. The methods and systems advantageously can make use of a low pressure ratio power turbine and an economizer heat exchanger in specific embodiments. Additional low grade heat from an external source can be used to provide part of an amount of heat needed for heating the recycle CO2 circulating fluid. Fuel derived CO2 can be captured and delivered at pipeline pressure. Other impurities can be captured.
Owner:8 RIVERS CAPTTAL LLC

Method for Generating Energy in an Energy Generating Installation Having a Gas Turbine, and Energy Generating Installation Useful for Carrying Out the Method

In a method for generating energy in an energy generating installation (10) having a gas turbine (12), in a first step, an oxygen-containing gas is compressed in a compressor (13, 14) of the gas turbine (12), in a second step the compressed gas is supplied, with the addition of fuel, for combustion in a combustion chamber (15), in a third step the hot flue gas from the combustion chamber (15) is expanded in a turbine (16) of the gas turbine (12) so as to perform work, and, in a fourth step, a branched-off part stream of the expanded flue gas is recirculated into a part of the gas turbine (12) lying upstream of the combustion chamber (15) and is compressed. A reduction in the CO2 emission, along with minimal losses of efficiency, is achieved in that carbon dioxide (CO2) is separated from the circulating gas in a CO2 separator (19), and in that measures are taken to compensate for the efficiency losses in the gas turbine cyclic process which are associated with the CO2 separation.
Owner:ALSTOM TECH LTD

Gas turbine engine assembly and method of assembling same

A method of assembling a gas turbine assembly includes providing a core gas turbine engine including a high-pressure compressor, a combustor, and a turbine, coupling a low-pressure turbine axially aft from the core gas turbine engine, coupling a fan assembly axially forward from the core gas turbine engine, and coupling a booster compressor to the low-pressure turbine such that the booster compressor and the low-pressure turbine rotate at a first rotational speed.
Owner:GENERAL ELECTRIC CO

Engine mounting configuration for a turbofan gas turbine engine

ActiveUS20090056343A1Minimizes backbone bendingMinimizes engine case distortionPower plant constructionJet type power plantsNacelleEngine mount
An engine mounting configuration reacts engine thrust at an aft mount. The engine mounting configuration reduces backbone bending of the engine, intermediate case distortion and frees-up space within the core nacelle.
Owner:RAYTHEON TECH CORP

Mobile fracturing pump transport for hydraulic fracturing of subsurface geological formations

Providing pressurized fracturing fluid with a fracturing pump transport comprising a first fracturing pump and a second fracturing pump that are coupled on opposite sides of a dual shaft electric motor. A first drive line assembly comprising a first engagement coupling that allows for selective engagement and / or disengagement of the first fracturing pump with the dual shaft electric motor. A second drive line assembly comprising a second engagement coupling that allows for selective engagement and / or disengagement of the second fracturing pump with the dual shaft electric motor. The fracturing pump transport also comprising an engagement panel that allows for selective engagement or disengagement at the first engagement coupling based on receiving a remote command.
Owner:TYPHON TECH SOLUTIONS (U S) LLC

System and method for generating and sustaining a corona electric discharge for igniting a combustible gaseous mixture

The invention relates to a system for igniting a fuel-air mixture in a combustion chamber with a corona discharge. The system comprises an electrode inside of the combustion chamber, an electric circuit which provides radio frequency electric power to the electrode, and a ground formed by the combustion chamber walls. A radio frequency voltage differential formed between the electrode and the ground produces a radio frequency electric field therebetween which causes a fuel-air mixture to ionize resulting in combustion of the fuel-air mixture. The system can be utilized in engines such as internal combustion engines or gas turbine engines, for example.
Owner:BORGWARNER INC

Turbine containing system and an injector therefor

A turbine containing system is disclosed. The system includes an intake section, a compressor section downstream from the intake section, a combustor section having a primary combustion system downstream from the intake section, a secondary combustion system downstream from the primary combustion system, a turbine section, an exhaust section and a load. The secondary combustion system includes an injector for transversely injecting a secondary fuel into a stream of combustion products of the primary combustion system. The injector including a coupling, a wall defining an airfoil shape circumscribing a fuel mixture passage, and at least one exit for communication between said fuel mixture passage and said stream of primary combustion products.
Owner:GENERAL ELECTRIC CO

Supercharging system for gas turbines

A supercharging system for gas turbine power plants (11). The system includes a supercharging fan (30, 32) and controller (50) for limiting turbine power output to prevent overload of the generator (28) at lower ambient temperatures. The controller can limit power output by burner control, inlet temperature control, control of supercharging fan pressure and other options. The system can be retrofit on an existing turbine without replacing the generator and associated parts.
Owner:ENHANCED TURBINE OUTPUT HLDG

Multiple-Substrate Transfer Apparatus and Multiple-Substrate Processing Apparatus

A multiple-substrate processing apparatus includes: a reaction chamber comprised of two discrete reaction stations aligned one behind the other for simultaneously processing two substrates; a transfer chamber disposed underneath the reaction chamber, for loading and unloading substrates to and from the reaction stations simultaneously; and a load lock chamber disposed next to the transfer chamber. The transfer arm includes one or more end-effectors for simultaneously supporting two substrates one behind the other as viewed in the substrate-loading / unloading direction.
Owner:ASM JAPAN +1

Differential geared turbine engine with torque modulation capability

A method and apparatus for controllable distribution of power from a turbine of a gas turbine engine between two rotatable loads of the gas turbine engine, comprises transferring a shaft power of the turbine to the respective rotatable loads using differential gearing operatively coupled with the turbine and the rotatable loads, respectively; and controlling the power transfer using machines operatively coupled with the respective rotatable loads, operable as a generator or a motor for selectively taking power from one of the rotatable loads to drive the other of the rotatable loads, or the reverse.
Owner:PRATT & WHITNEY CANADA CORP

Segmented abradable ceramic coating

A segmented abradable ceramic coating system having superior abradability and erosion resistance is disclosed. The system includes a duct segment having a metallic substrate, a MCrAlY bond coat on the substrate and a segmented abradable ceramic coating on the bond coat. The segmented abradable ceramic coating includes a base coat foundation layer, a graded interlayer and an abradable top layer for an overall thickness of preferably about 50 mils (1.270 mm). The coating is characterized by a plurality of vertical microcracks. By precisely controlling the deposition parameters, composition of the layers and layer particle morphology, segmentation is achieved, as well as superior abradability and erosion resistance.
Owner:UNITED TECH CORP

Method and apparatus for vaporizing liquid natural gas in a combined cycle power plant

A method and apparatus for increasing the efficiency of a combined cycle generation plant by assisting the vaporization of cold liquid including liquefied natural gas ("LNG") or liquefied petroleum gas (LPG) in a combined cycle power plant. Cold liquid vaporization is assisted by circulating a warm heat transfer fluid to transfer heat to a LNG / LPG vaporizer. The heat transfer fluid is chilled by LNG / LPG cold liquid vaporization and warmed by heat from a gas turbine. The heat transfer fluid absorbs heat from the air intake of a gas turbine and from a secondary heat transfer fluid circulating in a combined cycle power plant. Chilling the gas turbine air intake densifies the air and increases the gas turbine output. Chilling the steam condenser cooling water increases steam turbine output. The effects of chill recovery is higher output and better efficiency of the combined cycle plant.
Owner:BECHTEL CORP

Recuperated gas turbine engine system and method employing catalytic combustion

A recuperated gas turbine engine system and associated method employing catalytic combustion, wherein the combustor inlet temperature can be controlled to remain above the minimum required catalyst operating temperature at a wide range of operating conditions from full-load to part-load and from hot-day to cold-day conditions. The fuel is passed through the compressor along with the air and a portion of the exhaust gases from the turbine. The recirculated exhaust gas flow rate is controlled to control combustor inlet temperature.
Owner:MES INT INC

Managing spool bearing load using variable area flow nozzle

A turbine engine provides a spool supporting a turbine. The spool is arranged in a core nacelle and includes a thrust bearing. A fan is arranged upstream from the core nacelle and is coupled to the spool. A fan nacelle surrounds the fan and core nacelle and provides a bypass flow path that includes a fan nozzle exit area. A flow control device is adapted to effectively change the fan nozzle exit area. A controller is programmed to monitor the thrust bearing and command the flow control device in response to an undesired load on the thrust bearing. Effectively changing the fan nozzle exit area with the flow control device actively manages the bearing thrust load to desired levels.
Owner:RTX CORP

Method of generating energy in a power plant comprising a gas turbine, and power plant for carrying out the method

A method of generating energy in a power plant (30) having a gas turbine (29), includes a first step a gas containing air (1) is compressed in a first compressor (2) of the gas turbine (29), a second step the compressed gas (3, 3a, 3b; 5; 7a, 7b) is fed to a combustion process with the addition of fuel (8) in a combustor (23), a third step the hot flue gas (9) from the combustor (23) is expanded in an expander or a turbine (10), driving a generator (18), of the gas turbine (29) while performing work, and a fourth step a partial flow of the expanded flue gas (11) is recirculated to the inlet of the first compressor (2) and admixed with the gas containing air (1). Carbon dioxide (CO2) is separated from the compressed gas (3, 3a, 3b; 5; 7a, 7b) in a CO2 separator (6) before the third step. In such a method, the overall size and energy costs are reduced by virtue of the fact that, to permit increased CO2 concentrations in the CO2 separator (6), not more than about 70% of the carbon dioxide contained in the compressed gas (3, 3a, 3b; 5, 5a, 5b; 7a, 7b) is removed from the compressed gas (3, 3a, 3b; 5, 5a, 5b; 7a, 7b).
Owner:ALSTOM TECH LTD

Methods and apparatus for model based diagnostics

Systems and methods for performing module-based diagnostics are described. In an exemplary embodiment, sensor values from an actual engine plant are input to an engine component quality estimator which generates performance estimates of major rotating components. Estimated performance differences are generating by comparing the generated performance estimates to a nominal quality engine. The estimated performance differences, which are indicative of component quality, are continuously updated and input to a real-time model of the engine. The model receives operating conditional data and the quality estimates are used to adjust the nominal values in the model to more closely match the model values to the actual plant. Outputs from the engine model are virtual parameters, such as stall margins, specific fuel consumption, and fan / compressor / turbine efficiencies. The virtual parameters are combined with the sensor values from the actual engine plant in a fault detection and isolation classifier to identify abnormal conditions and / or specific fault classes, and output a diagnosis.
Owner:GENERAL ELECTRIC CO

Methods and Systems for Model-Based Control of Gas Turbines

Embodiments of systems and methods for tuning a turbine are provided. In one embodiment, a method may include receiving at least one of a measured operating parameter or a modeled operating parameter of a turbine during operation; and tuning the turbine during operation. The turbine may be tuned during operation by applying the measured operating parameter or modeled operating parameter or parameters to at least one operational boundary model, applying the measured operating parameter or modeled operating parameter or parameters to at least one scheduling algorithm, comparing the output of the operational boundary model or models to the at output of the scheduling algorithm or algorithms to determine at least one error term, and closing loop on the one error term or terms by adjusting at least one turbine control effector during operation of the turbine.
Owner:GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products