Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

229results about How to "Improve flame stability" patented technology

Method for Burning of Gaseous and Burner

ActiveUS20090220899A1Accelerate flowReduce cross sectionStaged combustionPilot flame ignitersAirflowProduct gas
A method for burning gas in a burner, including leading the gas through an inner fuel tube (13) and introduction of combustion air through an annular space surrounding the inner fuel tube. This space forms of an outer tube (11) terminated by a conically converging section, wherein the end of the inner fuel tube forms a burner head (15). The major part of the primary gas is introduced into the upstream end of the burner head, to go into the combustion air that flows past the burner head, whereas a smaller part of a secondary gas is introduced into the free end of the burner head (15) and into the constricted part of the annular channel that surrounds the burner head. The gas flow is accelerated past the burner head due to the reducing cross section and is burned downstream in relation to the burning head, wherein the mixture has properties that reduces the formation of Nox at the same time as the combustion becomes complete. It is also described a burner for performing this method.
Owner:NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY (NTNU)

Method for operating a burner and burner with stepped premix gas injection

The present invention relates to a method of operating a burner, which comprises at least one first fuel supply conduit (5) with a first group of fuel outlet openings (6), essentially arranged in the direction of a burner longitudinal axis (3), for a first premix fuel quantity and one or a plurality of second-fuel supply conduits (7) with a second group of fuel outlet openings (8), essentially arranged in the direction of the burner longitudinal axis (3), for a second premix fuel quantity, it being possible to admit fuel to the second fuel supply conduits (7) independently of the first fuel supply conduit (5). In the method, both fuel supply conduits (5, 7) are operated with the same fuel. By means of the present method of operating a burner, optimum mixing conditions can be set even in the case of different loads, gas qualities or gas preheat temperatures.
Owner:ANSALDO ENERGIA SWITZERLAND AG

Dual-rotational-flow inspirator

ActiveCN103867340AStrong interactionGood atomization performanceRocket engine plantsHollow cylinderEngineering
The invention provides a dual-rotational-flow inspirator, which comprises a top cover, a nozzle, an upper bottom, a middle bottom, a gas whirlcone and an inspirator cavity, wherein the inspirator cavity is a barrel-shaped hollow cylinder; a fuel cavity is formed between the top cover and the upper bottom of the inspirator; a gas oxidizing agent cavity is formed between the upper bottom and the middle bottom of the inspirator; a water cavity is formed between the middle bottom of the inspirator and the base of the inspirator; an inner nozzle passes through mounting holes in the upper bottom, the middle bottom and the inspirator cavity and is fixedly arranged on the upper bottom via a thread; the gas whirlcone is installed on the nozzle by a thread; water nozzles are water holes evenly distributed on the circumstance on the base of the inspirator. The inspirator provided by the invention has the characteristics of simple structure, low cost, good atomization performance and stable flame.
Owner:NAT UNIV OF DEFENSE TECH

Supersonic combustor wall surface concave cavity structure and engine combustor comprising same

The invention provides a supersonic combustor wall surface concave cavity structure and an engine combustor comprising the same. The supersonic combustor wall surface concave cavity structure comprises a mounting base (10), wherein a combustor wall surface concave cavity (40) is arranged in the mounting base (10); the upstream of the combustor wall surface concave cavity (40), positioned on the air inlet side, is equipped with a flow guiding hole (22); and correspondingly, the downstream of the flow guiding hole (22) is equipped with a concave cavity upstream fuel spray hole (21); the concave cavity upstream fuel spray hole (21) is nearer to the flow guiding hole (22); the downstream of the concave cavity upstream fuel spray hole (21) is equipped with a flow guiding hole outlet (27) which is communicated with the flow guiding hole (22); and the flow guiding hole outlet (27) is communicated with the concave cavity upstream fuel spray hole (21). The supersonic combustor wall surface concave cavity structure provided by the invention has a simple structure, can urge the ignition of fuels in the concave cavity before the ignition, and can reinforce the jet combustion of the fuels after the ignition.
Owner:NAT UNIV OF DEFENSE TECH

Method for control of NOx emission from combustors using fuel dilution

A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.
Owner:SANDIA NATIOANL LAB

On-duty flame stabilizer

The invention discloses an on-duty flame stabilizer, which comprises an atomization slot, an oil injection rod, an evaporation tube, a stabilizer side wall and air injection holes, wherein the atomization slot is a slot-shaped structural part with certain wall thickness and is arranged in the evaporation tube, a slot mouth points downstream, and the oil injection rod is at downstream position; the oil injection rod is provided with a plurality of oil injection holes and is arranged in the evaporation tube; the evaporation tube is a slot-shaped structural part with the air injection holes at both sides and certain wall thickness, and the outer side of the evaporation tube is provided with a stabilizer side wall; the stabilizer side wall is a two-side plat plate type structural part with certain wall thickness, and two flat plates have a certain flare angle downstream; a gap is left between the atomization slot and the evaporation tube, and the gap is flush at the head part of the stabilizer; a gap is left between the evaporation tube and the stabilizer side wall, and the gap is flush at the head part of the stabilizer; the air injection holes are positioned at both sides of the evaporation tube close to the bottom; and the on-duty flame stabilizer can be used in an aircraft engine and a stamping engine to improve the ignition performance, the flame stability and the combustion efficiency.
Owner:PEKING UNIV

Fuel Air Premix Chamber For a Gas Turbine Engine

Fuel / air premixing chambers are applied to a gas turbine combustor RQL or LPP type integrated to the combustor with extension into the combustion zone. An integral heat exchange structure cools the premix chamber outer wall, preheating the compressor air supply as it passes into an inner central longitudinal premix tube preheating also the fuel and F / A mixture for improved mixedness, low emissions combustion and low differential combustor pressure.The F / A premix flow thru the central longitudinal tubes yields an exiting spouting velocity into the primary combustion zone for swirl / circumferential flow combustion yielding flame stability. Circumferentially close spaced premixing chambers about the combustor outer wall, are tangentially positioned for internal combustion hot gas flow, preheating the adjacent premix chamber and generates internal sweeping hot gas flow preventing combustion chamber carbon issues. Incorporates low pressure fuel injection into a central longitudinal tube for reduced cost and system simplicity.
Owner:TEETAB JOSEPH MICHAEL

Multi-ejection grading combustion method and W flame boiler device for realizing same

The invention discloses a W flame boiler device for realizing a multi-ejection grading combustion and a method thereof, and relates to a W flame boiler device of a grading combustion and a method, which aims at the problems of high NOx exhaust, high fly ash combustible material content, late fire of the pulverized coal airflow and bad flame stability in the W type flame boiler referred in the background technology.The method comprises the following steps of: ejecting internal and external secondary air at the air speed of 35-65m / s step by step and downwards ejecting by carrying a concentrated coal dust airflow at the air speed of 10-20m / s to realize first and second stage grading combustion; and injecting arch lower secondary air at the air speed of 35-65m / s into the lower heath by an arch lower secondary air nozzle to realize third stage grading combustion. A concentrated coal dust airflow nozzle, an internal secondary air nozzle, a light coal dust airflow nozzle and an external secondary air nozzle are sequentially distributed from the center side of the hearth to the water-cooling wall of the front and rear wall of the lower hearth on a boiler arch; and the front and rear wall of the lower hearth is provided with the arch lower secondary air nozzle along the width direction of the hearth. The invention can greatly reduce NOx exhaust and fly ash combustible material content when used for the W flame boiler.
Owner:HARBIN INST OF TECH

Concentrate burner

A concentrate burner for feeding a pulverous concentrate mixture and reaction gas into the reaction shaft (1) of a flash smelting furnace. The concentrate burner includes a feeder pipe (2) for feeding the concentrate mixture into the reaction shaft (1), the orifice (3) of the feeder pipe opening to the reaction shaft, a dispersing device (4), which is arranged concentrically inside the feeder pipe (2) and which extends to a distance from the orifice inside the reaction shaft (1) for directing dispersing gas to the concentrate mixture flowing around the dispersing device. For feeding the reaction gas into the reaction shaft (1), a gas supply device (5) includes a reaction gas chamber (6), which is located outside the reaction shaft and opens to the reaction shaft (1) through an annular discharge orifice (7) that surrounds the feeder pipe (2) concentrically for mixing the reaction gas discharging from the discharge orifice with the concentrate mixture discharging from the middle of the feeder pipe, the concentrate mixture being directed to the side by means of the dispersing gas. The reaction gas chamber (6) comprises a turbulent flow chamber, to which an inlet channel (9) opens tangentially for directing the reaction gas to the reaction gas chamber in a tangential direction. In the inlet channel (9), an adjusting member (11) is arranged for adjusting the cross-sectional area of the reaction gas flow.
Owner:OUTOTEC OYJ

Flame structure of gas burner

A fire hole part structure of a gas burner, which is constructed to be manufactured at a low cost, can improve flame stability, and can prevent incomplete combustion due to the length of flame. The structure is provided to a premixing ignition burner, which is installed to apply heat to a heat exchanger of a boiler, and includes fire hole pieces which are installed parallel to one another in mounting openings of a burner body, and each of which is defined with fire holes at regular intervals. An upper wall of at least one of the fire hole pieces is bent or curved to extend in at least two directions, and the fire holes are defined through respective surface portions of the upper wall, which extend in different directions, to face different directions.
Owner:KYUNGDONG NAVIEN

System and method for flame stabilization

A system and method for flame stabilization is provided that forestalls incipient lean blow out by improving flame stabilization. A combustor profile is selected that maintains desired levels of power output while minimizing or eliminating overboard air bleed and minimizing emissions. The selected combustor profile maintains average shaft power in a range of from approximately 50% up to full power while eliminating overboard air bleed in maintaining such power settings. Embodiments allow for a combustor to operate with acceptable emissions at lower flame temperature. Because the combustor can operate at lower bulk flame temperatures during part power operation, the usage of inefficient overboard bleed can be reduced or even eliminated.
Owner:GENERAL ELECTRIC CO

Energy efficient low NOx burner and method of operating same

A burner assembly that produces very low NOx emissions includes a plurality of furnace gas openings for receiving a portion of furnace gasses back into a combustion cylinder. The burner assembly includes the combustion cylinder, a plurality of combustion air inlet conduits that extend into the cylinder and a plurality of fuel gas discharge nozzles that also extend into the cylinder. The burner assembly is mounted within a combustion chamber of a furnace, wherein the walls of the combustion chamber are provided with or are made up of heat transfer pipes. Thus, in operation, furnace gasses exit the combustion cylinder and, due to combined aspirating action created by air jets as they exit the air conduits and fuel gas jets discharging from the fuel gas discharge nozzles inside the combustion cylinder and a pressure differential between the combustion cylinder and the combustion chamber, a portion of the furnace gasses flow from the outlet of the combustion cylinder and past the heat transfer pipes toward the proximal or upstream end of the combustion cylinder. Passage of the furnace gasses past the heat transfer pipes cools the furnace gasses and the furnace gasses then flow through the furnace gas openings and mix with the combustion air and fuel gas to provide a lower NOx emission in an energy-efficient manner.
Owner:JOHN ZINK CO LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products