Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

754 results about "Bleed air" patented technology

Bleed air is compressed air taken from the compressor stage of a gas turbine upstream of its fuel-burning sections. Automatic air supply and cabin pressure controller (ASCPCs) valves bleed air from high or low stage engine compressor sections. Low stage air is used during high power setting operation, and high during descent and other low power setting operations. Bleed air from that system can be utilized for internal cooling of the engine, cross-starting another engine, engine and airframe anti-icing, cabin pressurization, pneumatic actuators, air-driven motors, pressurizing the hydraulic reservoir, and waste and water storage tanks. Some engine maintenance manuals refer to such systems as "customer bleed air". Bleed air is valuable in an aircraft for two properties: high temperature and high pressure (typical values are 200–250 °C and 275 kPa (40 PSI), for regulated bleed air exiting the engine pylon for use throughout the aircraft).

Gas turbine engine temperature modulated cooling flow

A gas turbine engine cooling system includes a heat exchanger in fluid communication with a source of cooling air, a first cooling circuit including a first heat exchanger circuit in the heat exchanger and a first bypass circuit with a first bypass valve for selectively bypassing at least a portion of first airflow around the first heat exchanger circuit. A second cooling circuit may be used having a second heat exchanger circuit in the heat exchanger and a shutoff control valve operably disposed in the second cooling circuit upstream of the second heat exchanger circuit and the heat exchanger. A circuit inlet of the first cooling circuit may be used to bleed a portion of compressor discharge bleed air for the first airflow to cool turbine blades mounted on a rotor disk using an annular flow inducer downstream of the first bypass valve and the heat exchanger.
Owner:GENERAL ELECTRIC CO

Turbo-Compressor System and Method for Extracting Energy from an Aircraft Engine

A turbo-compressor (TC) system for extracting energy from an aircraft engine. The TC system has a TC assembly with a turbine mechanically coupled to at least one compressor. The TC system has a TC inlet in fluid communication with a bleed air system in the aircraft engine and a TC outlet in fluid communication with an air conditioning (AC) pack of an aircraft air conditioning system and configured to extract reduced temperature pack inlet air from the TC assembly into the air conditioning pack. The TC system has a ram air inlet coupled to the at least one compressor. The TC system has a TC control valve, and a TC check valve or a TC shutoff valve, both coupled to the TC assembly via a plurality of connective ducts. The TC system extracts energy from the bleed air to reduce bleed air flow and AC pack ram air usage.
Owner:THE BOEING CO

Air-conditioning system for below-deck areas of a passenger aircraft

An aircraft air-conditioning system provides ventilation, air-conditioning and fire protection for a below-deck stairwell and cargo hold that may be equipped with passenger sleeping compartment containers. An air mixing unit mixes fresh air and recycled air to supply mixed air through a first supply air main line (31) and a supply air unit (21) into the freight hold (4), and through a second supply air main line (32) into the stairwell (5). A trimming air unit (7A) provides hot bleed air from the aircraft engines into the mixed air supplied through the first and second supply air main lines (31, 32). An exhaust air line (11) extracts exhaust air from the freight hold (4), while an exhaust air supplemental line (15) extracts exhaust air from the stairwell (5), both of which are connected to an exhaust air main line with an exhaust air ventilator (16) that blows the exhaust air overboard. A bypass line (8) provides bypass air if needed for the demands of the ventilator (16). Regulating valves and non-return flap valves in the supply air line and in the exhaust air line regulate the flow of air and prevent back-flow. Temperature sensors are connected to a controller that regulates the temperature of the mixed supply air to achieve a comfortable temperature in the freight hold and in the stairwell. In the event of fire, the air valves are closed, to seal-off the freight hold (4) and prevent the spread of smoke into the stairwell or other ventilated areas.
Owner:DAIMLER CHRYSLER AEROSPACE AIRBUS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products