Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1090 results about "Space charge" patented technology

Space charge is a concept in which excess electric charge is treated as a continuum of charge distributed over a region of space (either a volume or an area) rather than distinct point-like charges. This model typically applies when charge carriers have been emitted from some region of a solid—the cloud of emitted carriers can form a space charge region if they are sufficiently spread out, or the charged atoms or molecules left behind in the solid can form a space charge region. Space charge usually only occurs in dielectric media (including vacuum) because in a conductive medium the charge tends to be rapidly neutralized or screened. The sign of the space charge can be either negative or positive. This situation is perhaps most familiar in the area near a metal object when it is heated to incandescence in a vacuum. This effect was first observed by Thomas Edison in light bulb filaments, where it is sometimes called the Edison effect, but space charge is a significant phenomenon in many vacuum and solid-state electronic devices.

Space charge dosimeters for extremely low power measurements of radiation in shipping containers

Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.
Owner:UT BATTELLE LLC

Mono-energetic neutral beam activated chemical processing system and method of using

A chemical processing system and a method of using the chemical processing system to treat a substrate with a mono-energetic space-charge neutralized neutral beam-activated chemical process is described. The chemical processing system comprises a first plasma chamber for forming a first plasma at a first plasma potential, and a second plasma chamber for forming a second plasma at a second plasma potential greater than the first plasma potential, wherein the second plasma is formed using electron flux from the first plasma. Further, the chemical processing system comprises a substrate holder configured to position a substrate in the second plasma chamber.
Owner:TOKYO ELECTRON LTD

Cold-cathode ion source with a controlled position of ion beam

A cold-cathode ion source with a closed-loop ion-emitting slit which is provided with means for generating a cyclically-variable, e.g., alternating or pulsating electric or magnetic field in an anode-cathode space. These means may be made in the form of an alternating-voltage generator which generates alternating voltage on one of the cathode parts that form the ion-emitting slit, whereas the other slit-forming part is grounded. The alternating voltage deviates the ion beam in the slit with the same frequency of the alternating voltage. In accordance with another embodiment, the aforementioned means may be an electromagnetic coil which generates a magnetic field which passes through the ion-emitting slit, thus acting on the condition of the spatial-charge formation and, hence, on concentration of ions in the ion beam. The cold-cathode ion source may be of any type, i.e., with the ion beam emitted in the direction perpendicular to the direction of drift of electrons in the ion-emitting slit or with the direction of emission of the beam which coincides with the direction of electron drift.
Owner:ADVANCED ION TECH

Dual gate ldmos device and method

An N-channel device (40, 60) is described having a lightly doped substrate (42, 42′) in which adjacent or spaced-apart P (46, 46′) and N (44) wells are provided. A lateral isolation wall (76) surrounds at least a portion of the substrate (42, 42′) and is spaced apart from the wells (46, 46′, 44). A first gate (G1) (56) overlies the P (46) well or the substrate (42′) between the wells (46′, 44) or partly both. A second gate (G2) (66), spaced apart from G1 (56), overlies the N-well (44). A body contact (74) to the substrate (42, 42′) is spaced apart from the isolation wall (76) by a first distance (745) within the space charge region of the substrate (42, 42′) to isolation wall (76) PN junction. When the body contact (74) is connected to G2 (66), a predetermined static bias Vg2 is provided to G2 (66) depending upon the isolation wall bias (Vbias) and the first distance (745). The resulting device (40, 60) operates at higher voltage with lower Rdson and less HCI.
Owner:NORTH STAR INNOVATIONS

All-solid state lithium ion battery composite positive electrode material and preparation method thereof, and all-solid state lithium ion battery

Embodiments of the present invention provide an all-solid state lithium ion battery composite positive electrode material, which comprises a positive electrode active material and a cladding layer arranged on the surface of the positive electrode active material, the positive electrode active material is one or a plurality of materials selected from a lithium cobalt oxide, lithium nickelate, lithium manganate, lithium iron phosphate, lithium nickel cobalt manganese, vanadium pentoxide, molybdenum trioxide and titanium disulfide, and the cladding layer material is one or a plurality of lithium-containing transition metal oxides. According to the present invention, with the cladding layer, formation of the space charge layer can be effectively inhibited, the electrode / inorganic solid state electrolyte interface can be improved, and the interface resistance of the all-solid state lithium ion battery can be easily reduced so as to improve cycle stability and durability of the all-solid state lithium ion battery. Embodiments of the present invention further provide a preparation method for the all-solid state lithium ion battery composite positive electrode material, and an all-solid state lithium ion battery containing the all-solid state lithium ion battery composite positive electrode material.
Owner:泰州市海通资产管理有限公司

Complementary zener triggered bipolar ESD protection

An electrostatic discharge (ESD) protection clamp (61) for I / O terminals (22, 23) of integrated circuits (ICs) (24) comprises an NPN bipolar transistor (25) coupled to an integrated Zener diode (30). Variations in the break-down current-voltage characteristics (311, 312, 313, 314) of multiple prior art ESD clamps (31) in different parts of the same IC chip is avoided by forming the anode (301) of the Zener (30) in the shape of a base-coupled P+ annular ring (75) surrounded by a spaced-apart N+ annular collector ring (70) for the cathode (302) of the Zener (30). Even though an angled implant (51, 86, 98) used to form the N+ annular collector ring (70) causes location dependent variations in the width (53) of the Zener space charge (ZSC) region (69), the improved annular shaped clamp (61) always has a portion that initiates break-down at the design voltage so that variations in the width (53) of the ZSC region (69) do not cause significant variations in the clamp's current-voltage characteristics (611, 612, 613, 614).
Owner:NXP USA INC

Electrokinetic concentration device and methods of use thereof

InactiveUS20060180469A1Reduce and enhance adsorptionEnhance and reduce operation efficiencyCellsNanotechIon depletionBiology
The present invention provides a device and methods of use thereof in concentrating a species of interest and / or controlling liquid flow in a device. The methods, inter-alia, make use of a device comprising microchannels, which are linked to nanochannels, whereby induction of an electric field in the nanochannel results in ion depletion in the linkage region between the microchannel and nanochannel, and a space charge layer is formed within the microchannel, which provides an energy barrier for said species of interest which enables its concentration in a region in the microchannel.
Owner:MASSACHUSETTS INST OF TECH

Microchip and wedge ion funnels and planar ion beam analyzers using same

Electrodynamic on funnels confine, guide, or focus ions in gases using the Dehmelt potential of oscillatory electric field. New funnel designs operating at or close to atmospheric gas pressure are described. Effective on focusing at such pressures is enabled by fields of extreme amplitude and frequency, allowed in microscopic gaps that have much higher electrical breakdown thresholds in any gas than the macroscopic gaps of present funnels. The new microscopic-gap funnels are useful for interfacing atmospheric-pressure ionization sources to mass spectrometry (MS) and on mobility separation (IMS) stages including differential IMS or FAIMS, as well as IMS and MS stages in various configurations. In particular, “wedge” funnels comprising two planar surfaces positioned at an angle and wedge funnel traps derived therefrom can compress on beams in one dimension, producing narrow belt-shaped beams and laterally elongated cuboid packets. This beam profile reduces the ion density and thus space-charge effects, mitigating the adverse impact thereof on the resolving power, measurement accuracy, and dynamic range of MS and IMS analyzers, while a greater overlap with coplanar light or particle beams can benefit spectroscopic methods.
Owner:BATTELLE MEMORIAL INST

Method for controlling space charge-driven ion instabilities in electron impact ion sources

In a method for inhibiting space charge-related effects in an ion source, an electron beam is directed into a chamber to produce ions from sample material in the chamber. A voltage pulse is applied to the chamber to perturb an electron space charge present in the chamber. The ion source may be an electron impact ionization (EI) apparatus. The ion source may operated in conjunction with a mass spectrometry system.
Owner:BRUKER DALTONIK GMBH & CO KG

Memory device and manufacturing method thereof

Provided is a resistance variable non-volatile memory device using a trap-controlled Space Charge Limited Current (SCLC), and a manufacturing method thereof. The memory device includes a bottom electrode; an inter-electrode dielectric thin film diffusion prevention film formed on the bottom electrode; a dielectric thin film formed on the inter-electrode dielectric thin film diffusion prevention film and having a plurality of layers with different charge trap densities; and a top electrode formed on the dielectric thin film.
Owner:ELECTRONICS & TELECOMM RES INST

Device, system and method for measuring space charges by using electro-acoustic (PEA) method

The invention provides a device, a system and a method for measuring space charges by using an electro-acoustic (PEA) method. The device comprises a first electrode, a second electrode, a first thermostatic source, a second thermostatic source, a high-voltage direct current power supply, a pulse generator and a piezoelectric transducer, wherein the first electrode is used for contacting with one surface of the tested insulation material sample; the second electrode is used for contacting with the other surface of the tested insulation material sample; the first thermostatic source is used forconducting the temperature to the first electrode; the second thermostatic source is used for conducting the temperature to the second electrode; the high-voltage direct current power supply is used for transmitting the high-voltage direct current to the first electrode; the pulse generator is used for transmitting a high-voltage pulse signal to the first electrode; the piezoelectric transducer is used for detecting the acoustic signal of the tested insulation material sample, generated by the functions of the temperature gradient field, the high-voltage electric field and the high-voltage electric pulse, and is used for converting the acoustic signal into an electrical signal to output. The invention is used for measuring the distribution of the space charges in the high-voltage direct current power equipment insulation in the temperature gradient field.
Owner:XI AN JIAOTONG UNIV

Electrostatic Mass Spectrometer with Encoded Frequent Pulses

A method, apparatus and algorithms are disclosed for operating an open electrostatic trap (E-trap) or a multi-pass TOF mass spectrometer with an extended flight path. A string of start pulses with non equal time intervals is employed for triggering ion packet injection into the analyzer, a long spectrum is acquired to accept ions from the entire string and a true spectrum is reconstructed by eliminating or accounting overlapping signals at the data analysis stage while using logical analysis of peak groups. The method is particularly useful for tandem mass spectrometry wherein spectra are sparse. The method improves the duty cycle, the dynamic range and the space charge throughput of the analyzer and of the detector, so as the response time of the E-trap analyzer. It allows flight extension without degrading E-trap sensitivity.
Owner:LECO CORPORATION

Multispectral semiconductor resonant-cavity detector sensitive in at least two wavelength bands

A multispectral resonant-cavity detector is formed of at least one cavity (2) resonating at not less than two wavelengths and containing at least two layers (12, 14) that absorb the corresponding radiation and are placed at antinodes specific to stationary waves in the cavity, the cavity having at least two P-N junctions at whose space charge zones the layers are disposed. For each cavity, there are at least two electrical contacts to polarize the two junctions inversely to each other to detect the corresponding radiation.
Owner:COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

Method, System And Apparatus For Multiplexing Ions In MSn Mass Spectrometry Analysis

A method and apparatus for multiplexing ions in an MSn mass spectrometer is provided. Ion are filtered to produce a group of ions of interest, the group of ions below a space charge limit of the MSn mass spectrometer. At least a portion of the group of ions are fragmented to form a fragmented group of ions. At least a portion of the fragmented group are stored such that a plurality of portions of the fragmented group can be sequentially selected for mass spectrometry analysis. Each of the plurality of portions of the fragmented group are sequentially selected and re-fragmented prior to mass spectrometry analysis. Each of the plurality of portions of the fragmented group are analyzed, via mass spectrometry, once each of the plurality of portions of the fragmented group has been fragmented.
Owner:DH TECH DEVMENT PTE

Plasma ion mobility spectrometer

Ion mobility spectrometer. The spectrometer includes an enclosure for receiving a sample therewithin and an electron beam window admits an electron beam into the enclosure to ionize the sample in an ionization region. A shutter grid is spaced apart from the ionization region and means are provided for sample ion preconcentration upstream of the shutter grid. The ion preconcentration is effective to reduce space charge resulting in a lowered threshold detection level.
Owner:MASSACHUSETTS INST OF TECH

Controlling the characteristics of implanter ion-beams

A method and apparatus satisfying growing demands for improving the precision of angle of incidence of implanting ions that impact a semiconductor wafer and the precision of ribbon ion beams for uniform doping of wafers as they pass under an ion beam. The method and apparatus are directed to the design and combination together of novel magnetic ion-optical transport elements for implantation purposes. The design of the optical elements makes possible: (1) Broad-range adjustment of the width of a ribbon beam at the work piece; (2) Correction of inaccuracies in the intensity distribution across the width of a ribbon beam; (3) Independent steering about both X and Y axes; (4) Angle of incidence correction at the work piece; and (5) Approximate compensation for the beam expansion effects arising from space charge. In a practical situation, combinations of the elements allow ribbon beam expansion between source and work piece to 350 millimeter, with good uniformity and angular accuracy. Also, the method and apparatus may be used for introducing quadrupole fields along a beam line.
Owner:PURSER KENNETH H +2

Device for detecting the angle of incidence of radiation on a radiation incidence surface

A device for detecting the angle of incidence of radiation on a radiation incidence surface (14) comprises at last two first pairs (36) of photodiodes comprising first photodiodes (30) arranged along a first axis (12) and connected in series in a pair-wise manner. Each of the first photodiodes (30) comprises a space-charge zone (32) having a space-charge zone face (34) oriented towards the radiation incidence face (14). Further, the device is provided with a a shading mask (46) arranged at a distance (44) above the space-charge zone faces (34) of the first photodiodes (30) and comprising radiation-transmitting areas (48). Each radiation-transmitting area (48) is assigned to the space-charge zone faces (34) of the two first photodiodes (30) of a first pair (36) of photodiodes. When viewed in the direction of the normal of the radiation incidence face (14), the degree of overlapping between a radiation-transmitting area (48) and its assigned space-charge zone faces (34) in the direction of the first axis (12) is different for at least two of the first pairs (36) of photodiodes. The device also comprises an evaluation unit (56) for monitoring the photocurrent and / or the photovoltage of each first photodiode (30) of each first pair (36) of photodiodes and for detecting, on the basis of a comparison of the photocurrents and / or the photovoltages, the angle of incidence under which the component of the radiation which in the projection is directed parallel to the first axis (12) impinges on the radiation incidence face (14).
Owner:ELMOS SEMICON SE

Method, system and apparatus for multiplexing ions in MSn mass spectrometry analysis

A method and apparatus for multiplexing ions in an MSn mass spectrometer is provided. Ion are filtered to produce a group of ions of interest, the group of ions below a space charge limit of the MSn mass spectrometer. At least a portion of the group of ions are fragmented to form a fragmented group of ions. At least a portion of the fragmented group are stored such that a plurality of portions of the fragmented group can be sequentially selected for mass spectrometry analysis. Each of the plurality of portions of the fragmented group are sequentially selected and re-fragmented prior to mass spectrometry analysis. Each of the plurality of portions of the fragmented group are analyzed, via mass spectrometry, once each of the plurality of portions of the fragmented group has been fragmented.
Owner:DH TECH DEVMENT PTE

PEA space charge test device capable of testing conductive current

The invention belongs to the technical field of high voltage and insulation, and in particular relates to a PEA space charge test device capable of testing conductive current; the test device consists of a top electrode, a bottom electrode, a space charge collection channel, a current signal collection channel, and a pulse input channel; the top electrode is casted by epoxy resin to fix the metal shell of the top electrode and the central electrode of the top electrode to form an integral and movable top electrode; the bottom electrode is a tri-electrode structure composed of a bottom electrode external ring, a bottom electrode internal ring and a bottom electrode central column in a coaxial way; the bottom electrode external ring, the bottom electrode internal ring and the bottom electrode central column respectively realize the functions of inputting pulse, collecting conductive current signal and collecting space charge PEA signal; DC voltage and high voltage narrow pulse are respectively introduced in from two sides of a sample to avoid coupling with the DC high voltage and pulse, thus eliminating influence of surface current of the sample, solving the problem that pulsed electro-acoustic method (PEA) can not test conductive current, realizing synchronous test of sample conductive current and space charge, and being especially suitable for field of electronic engineering insulation material.
Owner:NORTH CHINA ELECTRIC POWER UNIV (BAODING)

P-n junction optoelectronic device for ionizing dopants by field effect

An optoelectronic device comprising a mesa structure including:a first and a second semiconductor portions forming a p-n junction,a first electrode electrically connected to the first portion which is arranged between the second portion and the first electrode,the device further comprising:a second electrode electrically connected to the second portion,an element able to ionize dopants of the first and / or second semiconductor portion through generating an electric field in the first and / or second semiconductor portion and overlaying at least one part of the side flanks of at least one part of the first and / or second semiconductor portion and of at least one part of a space charge zone formed by the first and second semiconductor portions,upper faces of the first electrode and of the second electrode form a substantially planar continuous surface.
Owner:COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

Method for measuring and judging insulation aging based on PEA space charges

The invention relates to a method for measuring and judging insulation aging based on PEA space charges. The method includes the steps that a pulsed electro-acoustic space charge measurement system is built, a space charge test is conducted on an insulating layer of a power cable, statistics is conducted on the absolute charge quantity of the space charges, the currently measured quantity and a threshold value are compared with historical data, and insulation is evaluated by utilizing the total quantity and the charge increased speed to analyze parameters; according to an externally applied high voltage power supply electric field and an insulation internal space charge distribution curve, an electric field intensity method is utilized to analyze insulation of the power cable, when calculated field intensity is higher than a design value, the insulation can be damaged, and the aging degree of insulation can be judged according to the increased speed of the electric field intensity. According to the method, the insulation internal space charges of the power cable are online monitored, and insulation aging of the power cable is evaluated according to data.
Owner:FOSHAN POWER SUPPLY BUREAU GUANGDONG POWER GRID

Method of reducing space charge in a linear ion trap mass spectrometer

A method of setting a fill time for a mass spectrometer including a linear ion is provided. The mass spectrometer is operated first in a transmission mode and ions are supplied to the mass spectrometer. Ions are detected as they pass through at least part of the mass spectrometer in a preset time period, to determine the ion current. From a desired maximum charge density for the ion trap and the ion current, a fill time for the ion trap is determined. The mass spectrometer is operated in a trapping mode to trap ions in the ion trap, and the ion trap is filled for the fill time, as just determined. This utilizes the ion trap to its maximum, while avoiding problems due to overfilling the trap, causing space charge effects.
Owner:MDS CO LTD +2

Plasma display panel and method for manufacturing the same

ActiveUS20090140652A1Large secondary electron emission coefficientLaunch evenlyTube/lamp screens manufactureAddress electrodesLow voltagePlasma display
Discharge delay” and “dependence of discharge delay on temperatures” are solved by improving a protective layer, thus a PDP can be driven at a low voltage. Furthermore, the PDP can display excellent images by suppressing “dependence of discharge delay on space charges.” Liquid-phase magnesium alkoxide (Mg (OR)2) or acetylacetone magnesium ate whose purity is 99.95% or more is prepared, and is hydrolyzed by adding a small amount of acids to the solution. Thus, a gel of magnesium hydroxide that is a magnesium oxide precursor is formed. Burning the gel in atmosphere at 700° C. or more produces powder containing MgO particles 16a-16d having the NaCl crystal structure with (100) and (111) crystal faces or with (100), (110) and (111) crystal faces. By pasting the powder on a dielectric layer 7 or a surface layer 8, the MgO powder 16 is formed so as to serve as the protective layer.
Owner:PANASONIC CORP

Electron beam apparatus

An electron beam emitted from an electron gun (G) forms a reduced image on a sample (S) through a non-dispersion Wien-filter (5-1), an electromagnetic deflector (11-1), a beam separator (12-1), and a tablet lens (17-1) as an objective lens. The beam separator (12-1) is configured such that a distance by which a secondary electron beam passes through the beam separator is approximately three times longer than a distance by which a primary electron beam passes through the beam separator. Therefore, even if a magnetic field in the beam separator is set to deflect the primary electron beam by a small angle equal to or less than approximately 10 degrees, the secondary electron beam can be deflected by approximately 30 degrees, so that the primary and secondary electron beams are sufficiently separated. Also, since the primary electron beam is deflected by a small angle, less aberration occurs in the primary electron beam. Accordingly, since a light path length of a primary electro-optical system, it is possible to reduce the influence of space charge and the occurrence of deflection aberration.
Owner:KIOXIA CORP

System and method for measuring high voltage cable space charges based on electroacoustic pulse method

InactiveCN103605008ARealize space charge distribution measurementReliable data baseElectrostatic field measurementsCapacitanceHigh voltage capacitors
The invention relates to a system and a method for measuring high voltage cable space charges based on an electroacoustic pulse method. A high voltage pulse source and a high voltage capacitor are connected in series and are then connected with measuring electrodes at two ends of a tested piece, a high voltage power source is further connected with the measuring electrodes at two ends of the tested piece through a current limit resistor, a piezoelectric sensor closely clings to the lower measuring electrode, the piezoelectric sensor acquires a stress wave signal and sends the processed signal to a computer to form the measuring system, the high voltage power source can be a direct current high voltage power source and further can be an alternating current high voltage power source, the alternating current high voltage power source is connected with a phase detection unit, and a phase detection circuit outputs a synchronous control signal to a pulse generation unit of the high voltage pulse source. The high voltage power source forms space charges in an insulation layer of an electric power cable through electrodes, disturbance of the charges in the insulation layer of the electric power cable is realized through the high voltage pulse source to form dynamic stress waves, the measuring system acquires a signal of a pressure sensor, and a distribution state of the space charges of the electric power cable is analyzed. Through the system and the method, measurement on the distribution state of the space charges in the insulation layer of the electric power cable under the alternating current state is realized.
Owner:SHANGHAI UNIVERSITY OF ELECTRIC POWER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products