Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

8270results about How to "Improve cycle life" patented technology

Conductive nanocomposite-based electrodes for lithium batteries

This invention provides a nanocomposite-based lithium battery electrode comprising: (a) A porous aggregate of electrically conductive nano-filaments that are substantially interconnected, intersected, physically contacted, or chemically bonded to form a three-dimensional network of electron-conducting paths, wherein the nano-filaments have a diameter or thickness less than 1 μm (preferably less than 500 nm); and (b) Sub-micron or nanometer-scale electro-active particles that are bonded to a surface of the nano-filaments with a conductive binder material, wherein the particles comprise an electro-active material capable of absorbing and desorbing lithium ions and wherein the electro-active material content is no less than 25% by weight based on the total weight of the particles, the binder material, and the filaments. Preferably, these electro-active particles are coated with a thin carbon layer. This electrode can be an anode or a cathode. The battery featuring such an anode or cathode exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Method of producing lithium ion-storing/releasing material, lithium ion-storing/releasing material, and electrode structure and energy storage device using the material

InactiveUS20090162750A1Quickly chargeHigh charge and discharge efficiencyHybrid capacitor electrodesDouble layer capacitorsLithiumSilicon oxide
A method of producing a material capable of electrochemically storing and releasing a large amount of lithium ions is provided. The material is used as an electrode material for a negative electrode, and includes silicon or tin primary particles composed of crystal particles each having a specific diameter and an amorphous surface layer formed of at least a metal oxide, having a specific thickness. Gibbs free energy when the metal oxide is produced by oxidation of a metal is smaller than Gibbs free energy when silicon or tin is oxidized, and the metal oxide has higher thermodynamic stability than silicon oxide or tin oxide. The method of producing the electrode material includes reacting silicon or tin with a metal oxide, reacting a silicon oxide or a tin oxide with a metal, or reacting a silicon compound or a tin compound with a metal compound to react with each other.
Owner:CANON KK

Li-ion battery array for vehicle and other large capacity applications

A large battery array, particularly for use in an electric vehicle, is formed of multiple modules, each containing plural battery cells and module management electronics. Each battery module has a nominal output voltage in the range of about 5 volts to about 17 volts. A controller communicates with individual battery modules in the array and controls switching to connect the modules in drive and charging configurations. The module management electronics monitor conditions of each battery module, including the cells it contains, and communicates these conditions to the controller. The module management electronics may place the modules in protective modes based upon the performance of each module in comparison to known or configurable specifications. The modules may be pluggable devices so that each module may be replaced if the module is in a permanent shutdown protective mode or if a non-optimal serviceable fault is detected.
Owner:BOSTON POWER INC

Nano-structured anode compositions for lithium metal and lithium metal-air secondary batteries

This invention provides a nano-structured anode composition for a lithium metal cell. The composition comprises: (a) an integrated structure of electrically conductive nanometer-scaled filaments that are interconnected to form a porous network of electron-conducting paths comprising interconnected pores, wherein the nano-filaments have a transverse dimension less than 500 nm; and (b) micron- or nanometer-scaled particles of lithium, a lithium alloy, or a lithium-containing compound wherein at least one of the particles is surface-passivated or stabilized and the weight fraction of these particles is between 1% and 99% based on the total weight of these particles and the integrated structure together. Also provided is a lithium metal cell or battery, or lithium-air cell or battery, comprising such an anode. The battery exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Non-sintered type thin electrode for battery, battery using same and process for same

An electrode substrate is formed by mechanically processing a nickel foil so as to be made three dimensional through the creation of concave and convex parts, and then, this substrate is filled with active material or the like so that an electrode is manufactured, wherein the above described concave and convex parts are rolling pressed so as to incline in one direction. Furthermore, an electrode for secondary battery is formed by using the above described method.
Owner:THE UNIV OF QUEENSLAND

Process for producing hybrid nano-filament electrodes for lithium batteries

This invention provides a process for producing a hybrid nano-filament composition for use in a lithium battery electrode. The process comprises: (a) providing a porous aggregate of electrically conductive nano-wires that are substantially interconnected, intersected, physically contacted, or chemically bonded to form a porous network of electrically conductive filaments, wherein the nano-wires have a diameter or thickness less than 500 nm; and (b) depositing an electro-active coating onto a surface of the nano-wires, wherein the electro-active coating is capable of absorbing and desorbing lithium ions and the coating has a thickness less than 10 μm, preferably less than 1 μm. This process is applicable to the production of both an anode and a cathode. The battery featuring an anode or cathode made with this process exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

High-capacity lithium-ion electrolyte, battery and preparation method of battery

The invention relates to a high-capacity lithium-ion electrolyte, a battery and a preparation method of a battery, in particular to the high-capacity lithium-ion electrolyte and the battery using the high-capacity lithium-ion electrolyte and the preparation method of the battery. The electrolyte disclosed by the invention comprises lithium salt and non-aqueous organic solvent, and also consists of the following components in weight percent in terms of the total weight of the electrolyte: 0.5-7% of film-forming additive, 0-15% of flame-retardant additive, 2-10% of antiovefill additive, 0.01-2% of stabilizer and 0.01-1% of wetting agent; the electrolyte can enable the anode with high Ni content to work stably, and reduce the battery cost; the high-capacity lithium-ion battery can perform high ratio capacity and excellent safety and high temperature property and cyclic life fully due to the addition and synergetic functions of various functional additives.
Owner:JIUJIANG TINCI ADVANCED MATERIALS CO LTD

Hybrid nano-filament cathode compositions for lithium metal or lithium ion batteries

This invention provides a hybrid nano-filament composition for use as a cathode active material. The composition comprises (a) an aggregate of nanometer-scaled, electrically conductive filaments that are substantially interconnected, intersected, or percolated to form a porous, electrically conductive filament network, wherein the filaments have a length and a diameter or thickness with the diameter or thickness being less than 500 nm; and (b) micron- or nanometer-scaled coating that is deposited on a surface of the filaments, wherein the coating comprises a cathode active material capable of absorbing and desorbing lithium ions and the coating has a thickness less than 10 μm, preferably less than 1 μm and more preferably less than 500 nm. Also provided is a lithium metal battery or lithium ion battery that comprises such a cathode. Preferably, the battery includes an anode that is manufactured according to a similar hybrid nano filament approach. The battery exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Mixed nano-filament electrode materials for lithium ion batteries

This invention provides a mixed nano-filament composition for use as an electrochemical cell electrode. The composition comprises: (a) an aggregate of nanometer-scaled, electrically conductive filaments that are substantially interconnected, intersected, or percolated to form a porous, electrically conductive filament network, wherein the filaments have a length and a diameter or thickness with the diameter / thickness less than 500 nm (preferably <100 nm) and a length-to-diameter or length-to-thickness aspect ratio greater than 10; and (b) Multiple nanometer-scaled, electro-active filaments comprising an electro-active material capable of absorbing and desorbing lithium ions wherein the electro-active filaments have a diameter or thickness less than 500 nm (preferably <100 nm). The electro-active filaments (e.g., nanowires) and the electrically conductive filaments (e.g., carbon nano fibers) are mixed to form a mat-, web-, or porous paper-like structure in which at least an electro-active filament is in electrical contact with at least an electrically conductive filament. Also provided is a lithium ion battery comprising such an electrode as an anode or cathode, or both. The battery exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Implantable devices using rechargeable zero-volt technology lithium-ion batteries

InactiveUS7184836B1Assures safe and reliable operation of systemFirmly connectedElectrotherapyLoad circuitLow voltage
An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Fast charging occurs at safer lower battery voltages (e.g., battery voltage above about 2.5 V), and slower charging occurs when the battery nears full charge higher battery voltages (e.g., above about 4.0 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.5 V), then very slow (trickle) charging occurs to bring the battery voltage back up to the safer voltage levels where more rapid charging can safely occur. The battery charging and protection circuitry also continuously monitors the battery voltage and current. If the battery operates outside of a predetermined range of voltage or current, the battery protection circuitry disconnects the battery from the particular fault, i.e. charging circuitry or load circuits.
Owner:QUALLION +1

Graphene/metal oxide composite cathode material for lithium ion battery and preparation

The invention belongs to the fields of material synthesis and energy technology, and especially relates to a graphene / metal oxide composite cathode material for lithium ion batteries and a preparation method thereof. Grapheme is dispersed into various metal oxide precursor salt solutions; a graphene / metal oxide compound is obtained directly by a hydrothermal method, or an graphene / metal oxide compound is obtained by a liquid in-situ polymerization method or a coprecipitation process; and the graphene / metal oxide compound is obtained by heat treatment or hydrothermal treatment. In the invention, the novel three-dimensional composite cathode material of graphene-coated metal oxide or graphene-anchored metal oxide is prepared by carrying metal oxide particles with graphene as a carrier. The obtained composite material can be used as a lithium ion battery cathode, which has a high specific capacity, excellent cycle stability and rate capability, and is expected to be used as a lithium ion battery cathode material with a high energy density and a high power density.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Structurally embedded intelligent power unit

An electrical power system for a spacecraft or other vehicle or structure comprising a structural member containing an integrated solid-state power source is disclosed. The power source includes a solar cell system and an energy storage system that are combined into a single unit or package, and in certain embodiments, are configured into the shape of a flexible aerobot balloon or a rigid nanosat surface panel. The power components of a preferred lightweight power unit, include thinly layered photovoltaic cells, a rechargeable lithium solid polymer electrolyte battery, a capacitor, electronics and thermal management capability.
Owner:LITHIUM POWER TECH

Method of producing hybrid nano-filament electrodes for lithium metal or lithium ion batteries

Disclosed is a method of producing a hybrid nano-filament composition for use in a lithium battery electrode. The method comprises: (a) providing an aggregate of nanometer-scaled, electrically conductive filaments that are substantially interconnected, intersected, physically contacted, or chemically bonded to form a porous network of electrically conductive filaments, wherein the filaments comprise electro-spun nano-fibers that have a diameter less than 500 nm (preferably less than 100 nm); and (b) depositing micron- or nanometer-scaled coating onto a surface of the electro-spun nano-fibers, wherein the coating comprises an electro-active material capable of absorbing and desorbing lithium ions and the coating has a thickness less than 10 μm (preferably less than 1 μm). The same method can be followed to produce an anode or a cathode. The battery featuring an anode or cathode made with this method exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Battery structures, self-organizing structures and related methods

An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
Owner:A123 SYSTEMS LLC +1

Nonaqueous electrolyte secondary cell

The present invention provides a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode having a negative active material, and a non-aqueous electrolyte; characterized in that said negative active material contains composite particle (C), which has silicon-containing particle (A) and electronic conductive additive (B), and carbon material (D), wherein the weight of said electronic conductive additive (B) falls within the range of 0.5 wt. % to 60 wt. % to the weight of said composite particle (C). The negative active material contains silicon which is capable of performing high discharge capacity, so that a non-aqueous electrolyte secondary battery having a large discharge capacity can be obtained. In addition, since the negative active material contains the electronic conductive additive (B) and the carbon material (D), the contact conductivity between the silicon-containing particle (A) or between the negative active material improves and, as a result, a non-aqueous electrolyte secondary battery having satisfactory cycle performance can be attained.
Owner:GS YUASA INT LTD

Lithium ion polymer electrolytes

A dimensionally stable, highly resilient, hybrid copolymer solid-solution electrolyte-retention film for use in a lithium ion battery in one preferred embodiment has a predominantly amorphous structure and mechanical strength despite contact with liquid solvent electrolyte. The film is a thinned (stretched), cast film of a homogeneous blend of two or more polymers, one of which is selected for its pronounced solvent retention properties. A very high surface area inorganic filler dispersed in the blend during formation thereof serves to increase the porosity of the film and thereby enhance electrolyte retention. The film is soaked in a solution of liquid polymer with liquid organic solvent electrolyte and lithium salt, for absorption thereof. Use of a cross-linked liquid polymer enhances trapping of molecules of the electrolyte into pores of the film. The electrolyte film is sandwiched between flexible active anode and cathode layers to form the lithium ion battery. Novel methods are provided for forming the electrodes, the polymer substrate, and other elements of the battery.
Owner:LITHIUM POWER TECH

Supercapacitor vehicle and roadway system

An electric supercapacitor module is utilized as the primary power source for the propulsion unit of electrically powered vehicles. The vehicle operates in conjunction with roadway embedded wireless chargers which continually charge the vehicle's supercapacitor while the vehicle is in motion to maintain the motion and materially increase the vehicle's range without limitation.
Owner:OPTIXTAL

Coated lithium electrodes

Batteries including a lithium anode stabilized with a metal-lithium alloy and battery cells comprising such anodes are provided. In one embodiment, an electrochemical cell having an anode and a sulfur electrode including at least one of elemental sulfur, lithium sulfide, and a lithium polysulfide is provided. The anode includes a lithium core and a ternary alloy layer over the lithium core where the ternary alloy comprises lithium and two other metals. The ternary alloy layer is effective to increase cycle life and storageability of the electrochemical cell. In a more particular embodiment, the ternary alloy layer is comprised of lithium, copper and tin.
Owner:POLYPLUS BATTERY CO INC

Implantable devices using rechargeable zero-volt technology lithium-ion batteries

InactiveUS7295878B1Assures safe and reliable operation of systemFirmly connectedImplantable neurostimulatorsLoad circuitLow voltage
An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Slow charging occurs at lower battery voltages (e.g., battery voltage below about 2.5 V), and fast charging occurs when the battery voltage has reached a safe level (e.g., above about 2.5 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.5 V), then very slow (trickle) charging occurs to bring the battery voltage back up to the safer voltage levels where more rapid charging can safely occur. The battery charging and protection circuitry also continuously monitors the battery voltage and current. If the battery operates outside of a predetermined range of voltage or current, the battery protection circuitry disconnects the battery from the particular fault, i.e. charging circuitry or load circuits.
Owner:QUALLION +1

Composite electrode comprising a carbon structure coated with a thin film of mixed metal oxides for electrochemical energy storage

A composite electrode is created by forming a thin conformal coating of mixed metal oxides on a highly porous carbon structure. The highly porous carbon structure performs a role in the synthesis of the mixed oxide coating and in providing a three-dimensional, electronically conductive substrate supporting the thin coating of mixed metal oxides. The metal oxide mixture shall include two or more metal oxides. The composite electrode, a process for producing said composite electrode, an electrochemical capacitor and an electrochemical secondary (rechargeable) battery using said composite electrode are disclosed.
Owner:SEYMOUR FRASER WADE

Electrically rechargeable, metal-air battery systems and methods

The invention provides for a fully electrically rechargeable metal-air battery systems and methods of achieving such systems. A rechargeable metal air battery cell may comprise a metal electrode an air electrode, and an aqueous electrolyte separating the metal electrode and the air electrode. In some embodiments, the metal electrode may directly contact the electrolyte and no separator or porous membrane need be provided between the air electrode and the electrolyte. Rechargeable metal air battery cells may be electrically connected to one another through a centrode connection between a metal electrode of a first battery cell and an air electrode of a second battery cell. Air tunnels may be provided between individual metal air battery cells. In some embodiments, an electrolyte flow management system may be provided.
Owner:EOS ENERGY STORAGE

Complementary power supply system of wind and photovoltaic power generation based on super capacitor power storage

The invention relates to a wind energy and light energy complementary power supply system based on the energy storage of a super-capacitor, which comprises a DC / DC buck converter (20), an AC / DC converter (30), a super-capacitor unit (40), a DC / AC inverter (50), a DC / DC boost-buck converter (60), a photovoltaic array (70), a wind mill generator (80), an oil engine / commercial power interface (90), an AC load (100) and a DC load (200). The photovoltaic array (70) is connected with the super-capacitor unit (40) by the DC / DC buck converter (20). The wind mill generator (80) and the oil engine / commercial power interface (90) are connected with the super-capacitor unit (40) by the AC / DC converter (30). The super-capacitor unit (40) supplies power to the AC load (100) by the DC / Ac inverter (50) and the DC load (200) by the DC / DC boost-buck converter (60). The invention provides a super-capacitor energy storage device used for the wind energy and light energy complementary power supply system, which can continuously provide power for the communication systems and the residents in remote areas where a distribution network cannot reach.
Owner:INST OF ELECTRICAL ENG CHINESE ACAD OF SCI

Anode and cathode conductive additive for secondary lithium battery, method for preparing conductive additive, and method for preparing secondary lithium battery

The invention discloses an anode and cathode conductive additive for a secondary lithium battery, a method for preparing the conductive additive, and a method for preparing the secondary lithium battery. The conductive additive is graphene or a mixture of the graphene and other conductive materials, is graphene powder or mixture powder of graphene and other conductive materials, and also can be graphene or mixture conductive agent slurry of the graphene and other conductive materials, which is uniformly dispersed in water or an organic solvent or in water or an organic solvent which contains a dispersing agent. The graphene conductive additive is suitable for preparing the anode and cathode of the secondary lithium battery, and has the obvious advantage of improving the high-rate performance and cycle stability of the secondary lithium battery compared with other conductive additives at present.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Polyimide electrode binders

Irreversible first cycle capacity loss in lithium secondary cells having a cell electrode based on a powdered material and a binder may be significantly decreased or eliminated by using an aliphatic or cycloaliphatic polyimide binder. Compared to conventional polyimide binders prepared by reacting an aromatic dianhydride and a diamine, the disclosed polyimide binders have decreased aromatic carbonyl content, may be less likely to undergo electrochemical reduction, and may be less likely to consume electrons that might otherwise help lithiate the electrode.
Owner:JOHNSON MATTHEY PLC

Multi-element composite nano-material, preparation method thereof and application thereof

The invention provides a multi-element composite nano-material for a super capacitor, and a preparation method of the nano-material. The nano-material comprises a carbon material, metal oxide and conducting polymer, and components of the nano-material can be two or more than two materials. By the aid of the characteristics such as fine electrical conductivity, long cycle life and high specific surface area of the carbon material, high pseudo-capacitance of the metal oxide and low internal resistance, low cost and high operating voltage of the conducting polymer, different types of electrode materials generate synergistic effects, advantages are mutually combined, shortcomings are mutually weakened, the energy storage characteristics of an electric double-layer capacitor and a pseudo-capacitor are simultaneously made full use of, a composite electrode material with high power density, fine circulating stability and higher energy density is prepared, and the multi-element composite nano-material is excellent in comprehensive performance when used for an electrode of the super capacitor, has the advantages of simple preparation process, short cycle, low cost and the like, and is suitable for large-scale industrial production.
Owner:中科(马鞍山)新材料科创园有限公司

Wind power and photovoltaic power complementary power supply system based on mixed energy accumulation of super capacitor accumulator

Disclosed is a wind and solar hybrid power system based on an ultra-capacitor battery hybrid system, which includes a DC / DC buck converter (20), an AC / DC converter (30), an ultra-capacitor assembly (40), a DC / AC converter (50), a battery assembly (60), a battery charge circuit (700), a photovoltaic array (70), a wind generator (80) and an oil engine / commercial power interface (90). The photovoltaic array (70) is connected with the ultra-capacitor assembly (40) through the DC / DC buck converter (20); the wind generator (80) and the oil engine / commercial power interface (90) are connected with the ultra-capacitor assembly (40) through the AC / DC converter (30); the ultra-capacitor assembly (40) charges the battery assembly (60) through the battery charge circuit (700); the ultra-capacitor assembly and the battery assembly provides a definite power buffering to the system so that to maintain a stable voltage of the power supply. The wind and solar hybrid power system of the invention can provides uninterrupted power to the telecommunication system and resident living in the undeveloped areas where the power distribution network can not reach.
Owner:INST OF ELECTRICAL ENG CHINESE ACAD OF SCI

Positive active material of a lithium-sulfur battery and method of fabricating same

A positive active material of a lithium-sulfur battery includes a sulfur-conductive agent-agglomerated complex in which a conductive agent particle is attached onto a surface of a sulfur particle having an average particle size less than or equal to 7 μm. The sulfur-conductive agent-agglomerated complex is manufactured by mixing a sulfur powder and a conductive agent powder to form a mixture, and milling the mixture.
Owner:SAMSUNG SDI CO LTD

Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery

An electrode material for an anode of a rechargeable lithium battery, containing a particulate comprising an amorphous Sn.A.X alloy with a substantially non-stoichiometric ratio composition. For said formula Sn.A.X, A indicates at least one kind of an element selected from a group consisting of transition metal elements, X indicates at least one kind of an element selected from a group consisting of O, F, N, Mg, Ba, Sr, Ca, La, Ce, Si, Ge, C, P, B, Pb, Bi, Sb, Al, Ga, In, Tl, Zn, Be, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, As, Se, Te, Li and S, where the element X is not always necessary to be contained. The content of the constituent element Sn of the amorphous Sn.A.X alloy is Sn / (Sn+A+X)=20 to 80 atomic %. An electrode structural body for a rechargeable lithium battery, comprising said electrode material for an anode and a collector comprising a material incapable of being alloyed with lithium in electrochemical reaction, and a rechargeable lithium battery having an anode comprising said electrode structural body.
Owner:CANON KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products