Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

555 results about "Conductive filament" patented technology

Hybrid nano-filament anode compositions for lithium ion batteries

This invention provides a hybrid nano-filament composition for use as an electrochemical cell electrode. The composition comprises: (a) an aggregate of nanometer-scaled, electrically conductive filaments that are substantially interconnected, intersected, or percolated to form a porous, electrically conductive filament network comprising substantially interconnected pores, wherein the filaments have an elongate dimension and a first transverse dimension with the first transverse dimension being less than 500 nm (preferably less than 100 nm) and an aspect ratio of the elongate dimension to the first transverse dimension greater than 10; and (b) micron- or nanometer-scaled coating that is deposited on a surface of the filaments, wherein the coating comprises an anode active material capable of absorbing and desorbing lithium ions and the coating has a thickness less than 20 μm (preferably less than 1 μm). Also provided is a lithium ion battery comprising such an electrode as an anode. The battery exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Printed three-dimensional (3D) functional part and method of making

A printed 3D functional part includes a 3D structure comprising a structural material, and at least one functional electronic device is at least partially embedded in the 3D structure. The functional electronic device has a base secured against an interior surface of the 3D structure. One or more conductive filaments are at least partially embedded in the 3D structure and electrically connected to the at least one functional electronic device.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Conforming-electrode catheter and method for ablation

A brush electrode catheter and a method for using the brush electrode catheter for tissue ablation are disclosed. The brush electrode catheter comprises a plurality of flexible filaments or bristles for applying ablative energy (e.g., RF energy) to target tissue during the formation of spot or continuous linear lesions. Interstitial spaces are defined among the filaments of the brush electrode, and the interstitial spaces are adapted to direct conductive or nonconductive fluid, when present, toward the distal ends of the brush filaments. The brush electrode facilitates electrode-tissue contact in target tissue having flat or contoured surfaces. The flexible filaments may be selectively trimmed to give a desired tip configuration or a desired standoff distance between the tissue and the conductive filaments in the brush electrode. Also, the filaments may be grouped into clusters. A shielded-tip brush electrode, including a flexible boot, is also disclosed.
Owner:ST JUDE MEDICAL ATRIAL FIBRILLATION DIV

Lamp string structure for emitting light within wide area

A lamp string structure for emitting light within wide area includes a first conductive wire and a second conductive wire parallel with each other, and at least one lighting element located between the first and second conductive wires. The lighting element has a first conductive filament and a second conductive filament electrically connected to the first and second conductive wires respectively. The lighting element is encased by a package body which has an insulation holding layer to hold the lighting element and an insulation covering layer connected to the insulation holding layer to cover the lighting element. The insulation holding layer and insulation covering layer are light transparent. Thus the lighting element can emit light radially without being constrained by light emission angles and also dissipate heat generated by the lighting element during light emission to reduce heat accumulation.
Owner:HSU YU MOU

Biological signal sensor on a body surface

An electrically conductive fiber and a coupled biomedical sensor are described. An electrically conductive core of the fiber includes a multiplicity of synthetic conductive filaments and an outer nonconductive fiber layer. The sensor area of the electrically conductive fiber is coated by thin film of silver ink and thin film of silver-silver chloride ink. The electrically conductive fiber's porous surface contacts the thin silver ink coating and the silver coating contacts the silver-chloride ink coating. A surface of the biomedical sensor is coated by a thick film of ionically conductive media, containing an electrolyte, in contact with the silver-chloride coating. The electrolyte diffuses into a porous structure of electrically conductive yarn.
Owner:LOBODZINSKI S SUAVE

Resistance ram having oxide layer and solid electrolyte layer, and method for operating the same

A resistance RAM that is provided with an oxide layer and a solid electrolyte layer, and a method for operating the same are provided. The resistance RAM comprises a first electrode, an oxide layer that is formed on the first electrode, a solid electrolyte layer that is disposed on the oxide layer, and a second electrode that is disposed on the solid electrolyte layer. The method comprises the step of forming a conductive tip in the oxide layer by applying reference voltage to any one of the electrodes of the resistance RAM, applying foaming voltage to the remain one, such that the oxide layer is electrically broken. A conductive filament is formed in the solid electrolyte layer by applying a positive voltage to the second electrode on the basis of the voltage that is applied to the first electrode. The conductive filament that is formed in the solid electrolyte layer is removed by applying a negative voltage to the second electrode on the basis of the voltage that is applied to the first electrode.
Owner:GWANGJU INST OF SCI & TECH

Resistive memory having rectifying characteristics or an ohmic contact layer

Disclosed is a resistive memory simultaneously having rectifying characteristics and resistive characteristics according to a bias direction, wherein a resistive diode is interposed between electrodes at the top and bottom thereof. The resistive diode has a form in which a p-type resistive semiconductor layer is bonded to an n-type resistive semiconductor layer. When a high reverse bias is applied to the resistive diode, the resistive diode forms a conductive filament. When a forward bias is applied thereafter, a reset that destroys a portion of the formed conductive filament occurs, and as a result, a high resistance state is formed. Additionally, when a reverse bias is applied again, a set operation regenerating a conductive filament occurs. Thus, a low resistance state is achieved. Moreover, in order to achieve a resistive semiconductor layer and ohmic contact, and suppress the formation of a Schottky barrier, an ohmic contact layer is formed on the resistive diode. The present invention enables each memory cell to read information without misreading said information, even at a low readout voltage, and reduces the driving power required for a memory structure, such that a high-capacity and high-density memory is produced, and complexity and high costs of manufacturing processes may be avoided.
Owner:IUCF HYU (IND UNIV COOP FOUND HANYANG UNIV)
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products