Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1534 results about "Electron transporting layer" patented technology

The purpose of an organic electron transport layer between the active layer and the cathode (or the anode) is to reduce the recombination of the free charge carriers (electrons and holes) with their counterparts on defects which exist on the interfaces.

Organic electroluminescent device having an azatriphenylene derivative

Azatriphenylene derivatives and their use in the electron-transporting layer of an electroluminescent device that comprises an anode, a spaced-apart cathode, and at least one electron-transporting layer disposed between the spaced-apart anode and cathode. Such EL devices provide lower drive voltage, improved power efficiency, and longer operational lifetime.
Owner:GLOBAL OLED TECH

Providing an organic electroluminescent device having stacked electroluminescent units

A stacked organic electroluminescent device and a method of making such device is disclosed. The device comprises an anode, a cathode, at least two organic electroluminescent units disposed between the anode and the cathode, and a doped organic connector disposed between each adjacent organic electroluminescent unit wherein the organic electroluminescent unit comprises at least one organic hole-transporting layer and one organic electron-transporting layer. The doped organic connector comprises at least one n-type doped organic layer or one p-type doped organic layer, or combinations of layers thereof.
Owner:EASTMAN KODAK CO

Electroluminescent device containing an anthracene derivative

An OLED device comprises a cathode, an anode, and a light-emitting layer therebetween, and additionally comprises a layer between the cathode and the light-emitting layer including a compound comprising one and only one anthracene nucleus bearing no more than two phenanthroline-containing substituents wherein said anthracene nucleus is substituted in the 2-, 3-, 6-, or 7-position with a phenanthroline-containing substituent. When such materials are included in a layer, such as an electron-transporting layer, that provide both desirable electroluminescent properties as well as good device stability.
Owner:GLOBAL OLED TECH

Electroluminescent devices including organic EIL layer

An OLED device comprises a cathode, an anode, and has therebetween a light emitting layer (LEL) comprising a phosphorescent emitting compound disposed in a host comprising a mixture of at least one electron transporting co-host and at least one hole transporting co-host, wherein there is present an electron transporting layer contiguous to the LEL on the cathode side and wherein there is present an EIL layer containing a heteroaromatic compound contiguous to the cathode.
Owner:GLOBAL OLED TECH

White light-emitting device with improved doping

Organic light-emitting diodes (OLEDs) that produce white light include an anode, a hole-transporting layer disposed over the anode, a blue light-emitting layer disposed over the hole-transporting layer, an electron-transporting layer disposed over the blue light-emitting layer, and a cathode disposed over the electron-transporting layer. The hole-transporting layer is doped with both a yellow-emitting and a red-emitting dopant. When used together with red, green, and blue color filters, the OLEDs produce red, green, and blue light with good color quality and high efficiency. Also disclosed are multicolor display devices utilizing the OLEDs together with color filters or together with both color filters and liquid-crystal light valves.
Owner:GLOBAL OLED TECH

OLEDs with improved operational lifetime

An organic light-emitting device includes a substrate, an anode and a cathode disposed over the substrate, and a light-emitting layer disposed between the anode and the cathode wherein the light-emitting layer includes a host and at least one dopant. The host of the light-emitting layer is selected to include a solid organic material including a mixture of at least two components wherein the first host component is an organic compound capable of transporting electrical charges and also forms an aggregate, and the second component of the mixture is an organic compound capable, of transporting electrical charges and, upon mixing with the first host component, is capable of forming a continuous and substantially pin-hole-free layer. The dopant of the light-emitting layer is selected to collect excitons and produce colored light, and an electron-transporting layer is disposed between the light-emitting layer and the cathode for providing improved electron injection and transport.
Owner:EASTMAN KODAK CO

Organic electroluminescent element and lumiscent device or display including the same

The present invention provides an organic electroluminescent element which is superior in luminance, reliability, and thermal stability and is capable of selectively emitting light with comparative long wavelengths such as red and good color purity and a light-emitting device or display device incorporated therewith. The organic electroluminescent element consists of a glass substrate (1), an anode (2), a hole transporting layer (10), an emitting layer (11), an electron transporting layer (12), and a cathode (3), which are sequentially laminated on top of the other. The emitting layer (11) is formed from a mixture composed of at least one species of the styryl compound represented by the general formula [I] below and a material with charge transporting capability. Y—CH═CH—X   General formula [I](where X denotes an aryl group (such as phenyl group) which has a substituent group (such as cyano group and methyl group), and Y denotes a group having a skeleton of aminophenyl group or the like.)
Owner:JOLED INC

Organic Light Emitting Device With a Plurality of Organic Electroluminescent Units Stacked Upon Each Other

The invention relates to an organic light emitting device comprising an anode (2); a cathode (4); and a plurality of organic electroluminescent units (3.1, . . . , 3.m; m≧2) provided upon each other in a stack or an inverted stack between said anode (2) and said cathode (4) each of said organic electroluminescent units (3.1, . . . , 3.m) comprising an electroluminescent zone; wherein at least some of the organic electroluminescent units (3.2, . . . , 3.m) comprise a p-type doped hole transporting-layer and / or an n-type doped electron-transporting layer.
Owner:NOVALED GMBH

Electron-transporting layer for white OLED device

An OLED device including a cathode, an anode, one or more light-emitting layers disposed between the anode and cathode to produce white light and a layer disposed between the light-emitting layer(s) and the cathode. The layer includes a polycyclic aromatic hydrocarbon compound that has the lowest LUMO value of the compounds in the layer, in an amount greater than or equal to 10% by volume and less than 100% by volume of the layer; at least one second compound exhibiting a higher LUMO value than the polycyclic aromatic hydrocarbon compound, where at least one of the second compounds is a low voltage electron-transporting material, and the total amount of such second compounds(s) is less than or equal to 90% by volume of the layer; and a metallic material based on a metal having a work function less than 4.2 eV.
Owner:EASTMAN KODAK CO

Electroluminescent devices

This invention relates to compositions and electroluminescent (EL) devices that have enhanced performance as a result of a novel class of anthracene derivatives used as host materials for a full range of color dopands. When using coumarin derivatives as color dopands in the anthracene derivatives in an EL device, the device performs a desirable light emitting efficiency and durability. The performance of the EL device can be further improved by using benazole derivatives as the electron transporting layer. The organic EL device of the present invention is useful in preparing display devices.
Owner:ELIGHT

Light-emitting component and process for its preparation

A light-emitting component comprising organic layers and having several layers between a base contact and a cover contact, the corresponding process for its preparation. At least one polymer layer and two molecular layers are arranged, so that when the cover contact is a cathode, the layer adjacent to the cover contact is designed as an electron-transporting molecular layer and is doped with an organic or inorganic donor, the electron-transporting layer comprising a principal organic substance and a donor-type doping substance, the molecular weight of the dopant being more than 200 g / mole. When the cover contact is an anode, the layer adjacent to the cover contact is designed as a p-doped hole-transporting molecular layer and is doped with an organic or inorganic acceptor, the hole-transporting layer comprising a principal organic substance and an acceptor-like doping substance, the molecular weight of the dopant being more than 200 g / mole.
Owner:NOVALED GMBH

Semiconductor device with reduced leakage current, and method of fabrication

A high electron mobility transistor is disclosed which has a triple-layered main semiconductor region formed on a silicon substrate via a multilayered buffer region. The multilayered buffer region is in the form of alternations of an aluminum nitride layer and a gallium nitride layer. Whilst the aluminum nitride layers are of n-like conductivity, the gallium nitride layers are doped into p-type conductivity, with the consequent creation of pn junctions between the two kinds of buffer layers. Another pn junction is formed between one p-type gallium nitride layer and the adjoining n-like electron transit layer included in the main semiconductor region. The pn junctions serve for reduction of current leakage.
Owner:SANKEN ELECTRIC CO LTD

Double doped-layer, phosphorescent organic light emitting devices

Phosphorescent OLEDs having a double doped-layer structure wherein the OLEDs include a hole transporting layer (HTL) having a phosphorescent material doped therein, and an electron transporting layer (ETL) having the same phosphorescent material doped therein. Typically, these phosphorescent OLEDs have an anode, a first HTL over the anode, a second HTL that is doped with a phosphorescent material over the first HTL, a first ETL that is doped with a phosphorescent material over the second HTL, a second ETL over the first ETL, and a cathode over the second ETL. These phosphorescent OLEDs preferably include blue phosphorescent OLEDs with high efficiency levels.
Owner:THE TRUSTEES FOR PRINCETON UNIV

Perovskite solar battery and preparing method thereof

The invention relates to a perovskite solar battery and a preparing method thereof. The perovskite solar battery comprises a transparent electrode, a hole transmission layer, a perovskite light absorption layer, an electronic transmission layer and a metal electrode. The hole transmission layer comprises at least one of PEDOT: PSS, P3HT, PTAA, PThTPTI, metallic oxide and graphene oxide. The electronic transmission layer comprises at least one of 58 pi-electronic fullerene PCBM, 56 pi-electronic fullerene OQMF, 54 pi-electronic fullerene OQBMF, PFN, PEIE, ZnO, TiO2, doped or modified ZnO or TiO2. The perovskite solar battery is high in energy exchange efficiency and low in cost and can be produced on a large scale, and the preparing method is simple in technology.
Owner:THE NAT CENT FOR NANOSCI & TECH NCNST OF CHINA

OLEDs with improved operational lifetime

An organic light-emitting device includes a substrate, an anode and a cathode disposed over the substrate, and a light-emitting layer disposed between the anode and the cathode wherein the light-emitting layer includes a host and at least one dopant. The host of the light-emitting layer is selected to include a solid organic material including a mixture of at least two components wherein the first host component is an organic compound capable of transporting electrical charges and also forms an aggregate, and the second component of the mixture is an organic compound capable of transporting electrical charges and, upon mixing with the first host component, is capable of forming a continuous and substantially pin-hole-free layer. The dopant of the light-emitting layer is selected to collect excitons and produce colored light, and an electron-transporting layer is disposed between the light-emitting layer and the cathode for providing improved electron injection and transport.
Owner:EASTMAN KODAK CO

Organic electroluminescent device

An organic EL device has a structure that includes a hole injecting electrode, hole injecting layer, hole transporting layer, light emitting layer, electron restricting layer, electron transporting layer, and electron injecting electrode, in sequence, on a substrate. For the electron restricting layer, a material having an electron mobility lower than that of the electron transporting layer or a material having a low LUMO (lowest unoccupied molecular orbital) energy level is used.
Owner:SANYO ELECTRIC CO LTD

Organic electroluminescent device of electroluminescent unit with lamina

A stacked organic electroluminescent device and a method of making such device is disclosed. The device comprises an anode, a cathode, at least two organic electroluminescent units disposed between the anode and the cathode, and a doped organic connector disposed between each adjacent organic electroluminescent unit wherein the organic electroluminescent unit comprises at least one organic hole-transporting layer and one organic electron-transporting layer. The doped organic connector comprises at least one n-type doped organic layer or one p-type doped organic layer, or combinations of layers thereof.
Owner:GLOBAL OLED TECH

Organic electroluminescent device

An organic electroluminescence device including opposite anode and cathode, and a hole-transporting region, an emitting layer and an electron-transporting region in sequential order from the anode between the anode and the cathode, wherein the emitting layer is formed of a red emitting layer, a green emitting layer, and blue emitting layer; the blue emitting layer contains a host BH and a fluorescent dopant FBD; the triplet energy ETfbd of the fluorescent dopant FBD is larger than the triplet energy ETbh of the host BH; the green emitting layer contains a host GH and a phosphorescent dopant PGD; a common electron-transporting layer is provided adjacent to the red emitting layer, the green emitting layer and the blue emitting layer within the electron-transporting region; the triplet energy ETel of a material constituting the electron-transporting layer is larger than ETbh; and the difference between the affinity of the host GH and the affinity of the material constituting the electron-transporting layer is 0.4 eV or less.
Owner:IDEMITSU KOSAN CO LTD

Organic electroluminescence device

An organic electroluminescent device, including: a cathode; an anode; and organic layers including at least an emitting layer and an electron-transporting layer between the cathode and the anode, the electron-transporting material with the slowest electron mobility constituting the electron-transporting layer having an electron mobility of 2.0×10−5 cm2 / Vs or more in an electric field intensity of 0.4 to 0.5 MV / cm, the electron mobility / hole mobility (ΔEM) of a host material constituting the emitting layer, and the electron mobility / hole mobility (ΔET) of the electron-transporting material with the slowest electron mobility constituting the electron-transporting layer satisfying the following relationship: ΔET>1, 0.3≦ΔEM≦10, and ΔET>ΔEM.
Owner:IDEMITSU KOSAN CO LTD

White light-emitting OLED device having a blue light-emitting layer doped with an electron-transporting or a hole-transporting material or both

An organic light-emitting diode (OLED) device which produces substantially white light includes an anode; a hole-transporting layer disposed over the anode; and a blue light-emitting layer having a host doped with a blue light-emitting compound disposed directly on the hole-transporting layer and the blue light-emitting layer being doped with an electron-transporting or a hole-transporting material or both selected to improve efficiency and operational stability. The device also includes an electron-transporting layer disposed over the blue light-emitting layer; a cathode disposed over the electron-transporting layer; and the hole-transporting layer or electron-transporting layer, or both the hole-transporting layer and electron-transporting layer, being selectively doped with a compound which emits light in the yellow region of the spectrum which corresponds to an entire layer or a partial portion of a layer in contact with the blue light-emitting layer.
Owner:GLOBAL OLED TECH

Organic Electroluminescent Device

Organic electroluminescent device (100) having a multilayer structure including at least emitting layer (15) and electron-transporting layer (16) between cathodes (17) and (18) and anode (12), the triplet energy gap (EgT) of a host material forming emitting layer (15) being 2.52 eV or more and 3.7 eV or less, an electron-transporting material forming electron-transporting layer (16) being different from the host material, and having hole-transporting properties, and emitting layer (15) including a phosphorescent metal complex compound containing a heavy metal.
Owner:IDEMITSU KOSAN CO LTD

Organic light-emitting device

An organic light-emitting device including: a substrate; a transparent cathode on the substrate; an anode disposed opposite to the cathode; an emission layer between the cathode and the anode; and a first electron transport layer between the cathode and the emission layer and including an imidazole derivative.
Owner:SAMSUNG DISPLAY CO LTD +1

Organic electroluminescent devices having a stability-enhancing layer

An organic light-emitting device with enhanced operational stability comprising an anode; a hole-transporting layer disposed over the anode; a light-emitting layer disposed over the hole-transporting layer for producing light in response to hole-electron recombination, wherein the light-emitting layer includes at least one organic host material and one organic luminescent dopant material; a stability-enhancing layer disposed in contact with the light-emitting layer, wherein the stability-enhancing layer includes at least one organic host material and one inorganic dopant material; an electron-transporting layer disposed over the stability-enhancing layer; and a cathode disposed over the electron-transporting layer.
Owner:GLOBAL OLED TECH

Organic Electroluminescent Device

Disclosed is an organic electroluminescent device (organic EL device) which is improved in luminous efficiency, fully assured of driving stability, and simple in constitution. The organic electroluminescent device comprises a hole-transporting layer, a light-emitting layer, and an electron-transporting layer disposed between an anode and a cathode piled one upon another on a substrate and the light-emitting layer contains a phosphorescent dopant and an indolocarbazole compound of specific structure. Examples of the indolocarbazole compound are N,N′-diphenylindolocarbazole and bis(N-phenylindolo)carbazole.
Owner:NIPPON STEEL CHEMICAL CO LTD

Low voltage organic electroluminescent element

An OLED device comprises a cathode, an electron-transporting layer (ETL), a light-emitting layer (LEL) containing a fluorescent light-emitting material, a hole-transporting layer (HTL), and an anode, in that order, wherein the ETL comprises a mixture of compounds, including a first compound and at least one second compound, and wherein there is present a hole blocking layer (HBL) adjacent to the LEL on the cathode side. It provides a reduced drive voltage with comparable color hue.
Owner:GLOBAL OLED TECH

Light emitting element

The present invention relates to a thin film light emitting element which has low drive voltage. In particular, the present invention relates to a thin film light emitting element which has low drive voltage and in which color purity and luminous efficiency are not deteriorated. A structure of a light emitting element of the present invention comprises at least an electron transporting layer, a light emitting layer containing a luminescent substance, a first region, and a second region are provided between electrodes, wherein the electron transporting layer includes the second region between the light emitting layer and the first region, the first region includes a substance containing a plycyclic condensed ring, and the second region does not include the substance containing a polycyclic condensed ring.
Owner:SEMICON ENERGY LAB CO LTD

Organic electroluminescent device

Disclosed is an organic electroluminescent device (organic EL device) which can achieve high efficiency and long lifetime even when driven at low voltage. The organic El device comprises at least a light-emitting layer and an electron-transporting layer between an anode and a cathode facing each other. The electron-transporting layer consists of two layers, namely, a first electron-transporting layer and a second electron-transporting layer and the first electron-transporting layer and the second electron-transporting layer are arranged sequentially in this order from the light-emitting layer side to the cathode side. The first electron-transporting layer contains an indole derivative in which the ring nitrogen atom is substituted with an aromatic group and an aromatic ring is fused to the indole ring.
Owner:NIPPON STEEL CHEMICAL CO LTD

Organic material and use thereof in organic EL device

The invention relates to an organic material and an organic light-emitting device containing the material. The structural formula of the material is shown in the right, wherein, Ar is chosen from sub-polycyclic aromatic hydrocarbon with 6-30 of carbon atoms or is chosen from sub-fused heterocyclic aromatic hydrocarbon with 6-30 of carbon atoms; R1-R8 are respectively and independently chosen from alkyl with 1-4 of hydrogen atoms and carbon atoms, aromatic group with 6-24 carbon atoms, heterocyclic aryl with 6-24 carbon atoms; and n is chosen from integers of 2 to 4. The organic material can be used as electronic transmission matrix in the organic light-emitting device.
Owner:SUZHOU QUINGYUE OPTOELECTRONICS TECH CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products