Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

389 results about "Molecular orbital" patented technology

In chemistry, a molecular orbital (MO) is a mathematical function describing the wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region. The term orbital was introduced by Robert S. Mulliken in 1932 as an abbreviation for one-electron orbital wave function. At an elementary level, it is used to describe the region of space in which the function has a significant amplitude. Molecular orbitals are usually constructed by combining atomic orbitals or hybrid orbitals from each atom of the molecule, or other molecular orbitals from groups of atoms. They can be quantitatively calculated using the Hartree–Fock or self-consistent field (SCF) methods.

Near infrared-absorbing electrochromic compounds and devices comprising same

InactiveUS6193912B1Efficient NIR absorberImproved and more intense NIR activityTenebresent compositionsNon-linear opticsElectricityNear infrared absorption
Electrochromic compounds capable of reversibly attenuating the transmittance of the near infrared portion of the electromagnetic spectrum are provided. These compounds exhibit an energy difference between the singly occupied molecular orbital (SOMO) energy and the highest doubly occupied molecular orbital (HDOMO) energy (ESOMO-EHDOMO) of less than about 3.6 eV. In addition, these compounds have a transition moment of the configuration made up of the HDOMO and SOMO that is "long axis polarized".
Owner:GENTEX CORP

Organic electroluminescent element and organic electroluminescent display device

An organic electroluminescent element comprising a cathode, an anode, an intermediate unit arranged between a cathode and an anode, a first light emitting unit arranged between a cathode and an intermediate unit, and a second light emitting unit arranged between an anode and an intermediate unit, wherein an electron extracting layer for extracting an electron from an adjacent layer adjoining a cathode side is provided in an intermediate unit, an absolute value of an energy level of a lowest unoccupied molecular orbital (LUMO) of an electron extracting layer |LUMO(A)|, and an absolute value of an energy level of a highest occupied molecular orbital (HOMO) of the adjacent layer |HOMO(B)| are in the relationship of |HOMO(B)|−|LUMO(A)|≦1.5 eV, and an intermediate unit supplies a hole generated by extraction of an electron from an adjacent layer by an electron extracting layer and, at the same time, supplies the extracted electron to a second light emitting unit.
Owner:SANYO ELECTRIC CO LTD

Photovoltaic devices fabricated from insulating nanostructured template

Photovoltaic devices, such as solar cells, and methods for their manufacture are disclosed. A device may be characterized by an architecture with an inorganic insulating nanostructured template having template elements between about 1 nm and about 500 nm in diameter with a elements density of between about 1012 elements / m2 and about 1016 elements / m2. A first charge-transfer material coats the walls of the template elements leaving behind additional space. A second charge-transfer material fills the additional space such that the first and second charge-transfer materials are volumetrically interdigitated. At least one charge transfer material has an absorbance of greater than about 103 / cm. The first and second charge-transfer materials have complementary charge transfer properties with respect to each other. A lowest unoccupied molecular orbital (LUMO) or conduction band of the first charge-transfer material is offset from a LUMO or conduction band of the second charge-transfer material by greater than about 0.2 eV. An electrically conductive material may optionally be disposed between the nanostructured template and the first charge-transfer material.
Owner:AERIS CAPITAL SUSTAINABLE IP +1

Use of an organic matrix material for producing an organic semiconductor material, organic semiconductor material and electronic component

The present invention relates to use of an organic matrix material for producing an organic semiconductor material, characterized in that the organic matrix material is comprised at least partly of a spirobifluorene compound, and the glass transition temperature of the organic matrix material is at least 120° C. and the highest occupied molecular orbital (HOMO) of the matrix material is at a maximum energy level of 5.4 eV; and also to an organic semiconductor material and electronic component.
Owner:NOVALED AG

Organic electronic device

An organic electronic device. The device includes a first electrode to inject or extract hole, the first electrode including a conductive layer and an n-type organic compound layer disposed on the conductive layer, a second electrode to inject or extract electron, a p-type organic compound layer disposed between the n-type organic compound layer and the second electrode. The p-type organic compound layer forms an NP junction between the n-type organic compound layer and the p-type organic compound layer. The energy difference between a lowest unoccupied molecular orbital (LUMO) energy of the n-type organic compound layer and a Fermi energy of the conductive layer is about 2 eV or less, and the energy difference between the LUMO energy of the n-type organic compound layer and a highest unoccupied molecular orbital (HOMO) energy of the p-type organic compound layer is about 1 eV or less.
Owner:LG DISPLAY CO LTD

Light emitting device

By doping an organic compound functioning as an electron donor (hereinafter referred to as donor molecules) into an organic compound layer contacting a cathode, donor levels can be formed between respective LUMO (lowest unoccupied molecular orbital) levels between the cathode and the organic compound layer, and therefore electrons can be injected from the cathode, and transmission of the injected electrons can be performed with good efficiency. Further, there are no problems such as excessive energy loss, deterioration of the organic compound layer itself, and the like accompanying electron movement, and therefore an increase in the electron injecting characteristics and a decrease in the driver voltage can both be achieved without depending on the work function of the cathode material.
Owner:SEMICON ENERGY LAB CO LTD

Organic electroluminescent device

An organic EL device has a structure that includes a hole injecting electrode, hole injecting layer, hole transporting layer, light emitting layer, electron restricting layer, electron transporting layer, and electron injecting electrode, in sequence, on a substrate. For the electron restricting layer, a material having an electron mobility lower than that of the electron transporting layer or a material having a low LUMO (lowest unoccupied molecular orbital) energy level is used.
Owner:SANYO ELECTRIC CO LTD

Organic electroluminescence element

In an organic electroluminescent device constructed by providing at least an emitting layer using an organic material between a hole injection electrode and an electron injection electrode, in forming an emitting layer having a dopant doped into a host material, a dopant having a condensed ring obtained by condensing three or more rings is used, and the difference between the highest occupied molecular orbital in the host material and the highest occupied molecular orbital in the dopant is in a range from -0.3 eV to +0.3 eV.
Owner:SANYO ELECTRIC CO LTD

Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix

A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.
Owner:THE TRUSTEES FOR PRINCETON UNIV

Light-Emitting Element, Light-Emitting Device, and Electronic Device

In a light-emitting element including an EL layer between a pair of electrodes, a structure is formed in which the EL layer includes at least a first layer having a hole-injecting property (a hole-injecting layer) and a second layer having a hole-transporting property (a hole-transporting layer) between the electrode functioning as an anode and a third layer having a light-emitting property (a light-emitting layer), and the absolute value of the highest occupied molecular orbital level (HOMO level) of the second layer is larger than that of the first layer, so that the injection amount of holes from the electrode side which functions as an anode is suppressed, and thus luminous efficiency of the light-emitting element is increased.
Owner:SEMICON ENERGY LAB CO LTD

Electrolyte and lithium ion secondary battery including the same

An electrolyte for a lithium ion secondary battery is provided. The electrolyte includes a non-aqueous organic solvent, a lithium salt, an ionic liquid and an additive. The additive has a lowest unoccupied molecular orbital (LUMO) level of -0.5 to 1.0 eV and a highest occupied molecular orbital (HOMO) level lower than -11.0 eV. Further provided is a lithium ion secondary battery including the electrolyte. The battery is advantageous in terms of overcharge safety and heat stability. In addition, the battery has improved high-efficiency properties and cycle life characteristics.
Owner:SAMSUNG SDI CO LTD

Non-aqueous electrolyte secondary batteries and devices using the same

In a rechargeable non-aqueous electrolyte secondary battery containing positive electrodes, negative electrodes and a non-aqueous solvent, an organic compound having a HOMO energy of −8.5 eV to −11.0 eV and a LUMO energy of −0.135 eV to 3.5 eV which are calculated using PM3 method for Hamiltonian in semiempirical molecular orbital calculation method is added to the non-aqueous solvent. According to the present invention, batteries excellent in safety and long-term reliability and portable information devices are provided.
Owner:PANASONIC CORP

Organic electronic device

An organic electronic device. The device includes a first electrode to inject or extract hole, the first electrode including a conductive layer and an n-type organic compound layer disposed on the conductive layer, a second electrode to inject or extract electron, a p-type organic compound layer disposed between the n-type organic compound layer and the second electrode. The p-type organic compound layer forms an NP junction between the n-type organic compound layer and the p-type organic compound layer. The energy difference between a lowest unoccupied molecular orbital (LUMO) energy of the n-type organic compound layer and a Fermi energy of the conductive layer is about 2 eV or less, and the energy difference between the LUMO energy of the n-type organic compound layer and a highest unoccupied molecular orbital (HOMO) energy of the p-type organic compound layer is about 1 eV or less.
Owner:LG DISPLAY CO LTD

Organic electroluminescent element

In an organic electroluminescent element provided with a blue light-emitting layer and an orange light-emitting layer as a light-emitting layer between a hole injection electrode and an electron injection electrode, the blue light-emitting layer contains a host material, a light-emitting dopant and an assist dopant supplementing the carrier transfer of the host material. When the host material is an electron transfer material, an assist dopant has a smaller absolute value of highest occupied molecular orbital (HOMO) energy level than that of the host material and has a higher hole mobility than that of the host material.
Owner:SANYO ELECTRIC CO LTD

Method for preparing electrophotographic photosensitive member

A method for preparing in high productivity and stably an electrophotographic photosensitive member having depressed portions on its surface, is provided. The method is characterized in that a coating liquid for a surface layer which includes a solvent including a hydrophilic solvent and a hydrophobic solvent and a polymer compound soluble in the hydrophobic solvent is used; the hydrophilic solvent has a boiling point equal to or higher than that of the hydrophobic solvent; the hydrophilic solvent has a dipole moment of 0 or more and less than 2.8, obtained by a structure optimized calculation using a semiempirical molecular orbital calculation; the total mass of the hydrophobic solvent is 50 mass % or more and less than 100 mass % of the total mass of the solvent included in the coating liquid for a surface layer; and after the coating liquid for a surface layer is applied, the depressed portions are formed by condensation on the surface on which the coating liquid for a surface layer is applied.
Owner:CANON KK

Light-Emitting Element, Light-Emitting Device, and Electronic Appliance

In a light-emitting element including an EL layer between a pair of electrodes, between an electrode functioning as an anode and a fourth layer having a light-emitting property (light-emitting layer), the EL layer includes at least a first layer having a hole-injecting property (hole-injecting layer), a second layer having a hole-transporting property (first hole-transporting layer), and a third layer having a hole-transporting property (second hole-transporting layer). The absolute value of the highest occupied molecular orbital level (HOMO level) of the second layer is larger than the absolute value of the highest occupied molecular orbital level (HOMO level) of each of the first layer and the third layer. With such a structure, the rate of transport of holes injected from the electrode functioning as an anode is reduced and emission efficiency of the light-emitting element is improved.
Owner:SEMICON ENERGY LAB CO LTD

Light emitting device

To provide an organic electroluminescent device having excellent durability and having high luminous efficiency and luminance, the organic electroluminescent device includes an organic compound layer containing at least one light emitting layer, wherein the light emitting layer contains a light emitting material and an electrically inactive organic compound capable of being subjected to dry film formation and having an energy difference Eg between highest occupied molecular orbital and lowest unoccupied molecular orbital of 4.0 eV or more.
Owner:UDC IRELAND

Slurry composition for secondary cell positive electrode, secondary cell positive electrode and secondary cell

A slurry composition for a positive electrode for a lithium ion secondary battery, comprising a polymer A wherein a HOMO value by a semiempirical method molecular orbital calculation is -13.5 eV to -10 eV and a content of ethylene repeatingunits is 30 mol % to 95 mol %; apolymer B wherein a HOMO valueby a semi empirical method molecular orbital calculation is -13.5 eV to -10 eV, a glass transition temperature is -80° C. to 0° C., and a gel content is 50 wt % or more; an active material for a positive electrode; a conductivity adding agent; and a liquid medium C in which the polymer A dissolves but the polymer B does not dissolve. According to the composition, a lithium ion secondary battery having a large battery capacity, a good charge / discharge cycle characteristic and an improved rate characteristic can be realized.
Owner:ZEON CORP

Method for Specifically Detecting Analyte Using Photocurrent, and Electrode, Measuring Cell and Measuring Device for Use Therein

A method, an electrode, a measuring cell, and a measuring device are disclosed which can detect and quantitatively determine an analyte having specific bonding properties, in a highly sensitive, simple and accurate manner using photocurrent. This method comprises contacting a working electrode and a counter electrode with an electrolyte medium, wherein the working electrode has an analyte immobilized thereon through a probe substance and wherein the analyte is bonded to a sensitizing dye; irradiating the working electrode with light to photoexcite the sensitizing dye; and detecting photocurrent flowing between the working electrode and the counter electrode, wherein the photocurrent is generated by transfer of electrons from the photoexcited sensitizing dye to the working electrode. The working electrode comprises an electron accepting layer comprising an electron accepting substance capable of accepting electrons released from the sensitizing dye in response to photoexcitation, wherein the probe substance is supported on a surface of the electron accepting layer. The electron accepting substance is an oxide semiconductor having an energy level lower than that of a lowest unoccupied molecular orbit (LUMO) of the sensitizing dye. The electrolyte medium comprises an electrolyte and at least one solvent selected from an aprotic solvent and a protic solvent, wherein the electrolyte comprises a salt capable of providing an oxidized sensitizing dye with electrons.
Owner:TOTO LTD

Organic light emitting diode and method of fabricating the same

Provided is an organic light emitting diode which can easily control color coordinates and improve a device's life span characteristic by using an auxiliary dopant having a higher band gap energy than that of a host, and preferably, having an absolute value of the highest occupied molecular orbital energy level equal to or higher than that of the host, or an absolute value of the lowest unoccupied molecular orbital energy level equal to or lower than that of the host.The organic light emitting diode includes a first electrode, an emission layer disposed on the first electrode and including a host, an emitting dopant and an auxiliary dopant, and a second electrode disposed on the emission layer. Here, the auxiliary dopant has a higher band gap energy than the host. A method of fabricating the organic light emitting diode is provided.
Owner:SAMSUNG DISPLAY CO LTD

Organic light-emitting device

An object of the present invention is to provide an organic blue-light-emitting device having high emission efficiency and a long continuous driving lifetime. The organic light-emitting device include a layer containing a first compound having a fluoranthene skeleton and a second compound having a pyrene skeleton, the second compound having an energy gap larger than that of the first compound, wherein EL1 representing the energy of the lowest unoccupied molecular orbit (LUMO) of the first compound and EL2 representing the energy of the LUMO of the second compound satisfy a relationship of EL2−EL1≧0.15 eV.
Owner:CANON KK

Organic light emitting display (OLED) and its method of manufacture

An Organic Light Emitting Display (OLED) and a method of manufacturing the OLED includes: a first electrode arranged on a substrate; a Hole Transporting Layer (HTL) arranged on the first electrode; a light Emitting Layer (EL) arranged on the HTL; an Electron Transporting Layer (ETL) arranged on the light EL; and a second electrode arranged on the ETL; the light EL includes a soluble hole transporting host, a soluble electron transporting host, and a soluble light emitting dopant; a difference of a Highest Occupied Molecular Orbital (HOMO) level between the HTL and the hole transporting host respectively and the light emitting dopant is 1 eV or less; a difference of a HOMO level between the HTL and the hole transporting host respectively and the electron transporting host is 0.5eV or more; a difference of a Lowest Unoccupied Molecular Orbital (LUMO) level between the ETL and the electron transporting host respectively and the light emitting dopant is 1 eV or less; and a difference of a LUMO level between the ETL and the electron transporting host respectively and the hole transporting host is 0.5 eV or more.
Owner:SAMSUNG MOBILE DISPLAY CO LTD

Method of calculating carrier mobility

A calculation method for finding the hole mobility or the electron mobility of an organic film. The method includes the steps of: calculating the electron density of a film using semi-empirical quantum molecular dynamics calculations; using the fact that holes and electrons move easily through regions of high electron density to calculate the probability that a hole or an electron will move in an excited state in which an electron is excited from the HOMO (highest occupied molecular orbital) to the LUMO (lowest unoccupied molecular orbital) using a Monte Carlo method; and, using the probability as a performance index, calculating the hole mobility from the number of carriers which exist in the HOMO and the orbitals below the HOMO, or calculating the electron mobility from the number of carriers which exist in the LUMO and the orbitals above the LUMO.
Owner:SEMICON ENERGY LAB CO LTD

Stacked organic light emitting diode

The present invention provides a stacked organic light emitting diode that comprises a first electrode; a second electrode; and at least two light emitting units that are located between the first electrode and the second electrode. The light emitting unit satisfies the following energy relation equation, and includes an n-type organic layer and a p-type organic layer that form NP conjunction, and also includes an n-type doped organic layer that is located between the light emitting units:EpH−EnL≦1 eVwherein EnL is a LUMO (lowest unoccupied molecular orbital) energy level of the n-type organic layer and EpH is a HOMO (highest occupied molecular orbital) energy level of the p-type organic layer.
Owner:LG DISPLAY CO LTD

Organic compound based on triazine and benzimidazole and application thereof to organic light-emitting diode (OLED) device

The invention relates to an organic compound based on triazine and benzimidazole and application thereof to an organic light-emitting diode (OLED) device. The compound disclosed by the invention has a high vitrification temperature and high molecular thermal stability; the compound has a low absorption rate and a high refraction rate in the field of visible light, and can be applied to a CPL (Circular-Polarizing Filter) layer of the OLED device to effectively increase the light output efficiency of the OLED device; the compound also has a deep HOMO (Highest Occupied Molecular Orbital) energy level and a high electron mobility, can be taken as a hole-blocking / electron transport layer material of the OLED device, and can effectively block holes or prevent energy from being transported from a light-emitting layer to one side of an electron layer, so that the compound efficiency of the holes and electrons on the light-emitting layer is increased, and the light-emitting efficiency and the service life of the OLED device are increased and prolonged.
Owner:JIANGSU SUNERA TECH CO LTD

White organic light emitting device

A white organic light emitting device (OLED) includes an anode and a cathode spaced apart from each other; a blue light emitting layer, a green light emitting layer, and a red light emitting layer sequentially formed between the anode and the cathode; a first buffer layer formed between the blue light emitting layer and the green light emitting layer, and having a HOMO (highest occupied molecular orbital)-LOMO (lowest occupied molecular orbital) energy gap higher than or equal to that of the adjacent light emitting layers; and a second buffer layer formed between the green light emitting layer and the red light emitting layer, and having a LOMO energy level higher than that of the red light emitting layer.
Owner:SAMSUNG DISPLAY CO LTD

Organic light-emitting diode with enhanced efficiency

Generally, the devices provided herein comprise at least a hole-transport layer, two light-emitting layers, and an electron-transport layer, each having a highest occupied molecular orbital (HOMO) energy level and a lowest unoccupied molecular orbital (LUMO) energy level, wherein at least one of the HOMO energy levels and / or the LUMO energy levels of at least one of the light-emitting layers does not decrease in a stepwise fashion.
Owner:NITTO DENKO CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products