Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

491results about How to "Long life time" patented technology

Aromatic amine derivative and electroluminescence device using the same

Provided are a novel aromatic amine derivative having a specific structure and an organic electroluminescence device in which an organic thin layer comprising a single layer or plural layers including a light emitting layer is interposed between a cathode and an anode, wherein at leas one layer of the above organic thin layer contains the aromatic amine derivative described above in the form of a single component or a mixed component. Thus, the organic electroluminescence device is less liable to be crystallized in molecules, improved in a yield in producing the organic electroluminescence device and extended in a lifetime.
Owner:IDEMITSU KOSAN CO LTD

Organic electroluminescent device having an azatriphenylene derivative

Azatriphenylene derivatives and their use in the electron-transporting layer of an electroluminescent device that comprises an anode, a spaced-apart cathode, and at least one electron-transporting layer disposed between the spaced-apart anode and cathode. Such EL devices provide lower drive voltage, improved power efficiency, and longer operational lifetime.
Owner:GLOBAL OLED TECH

Material for organic electroluminescence device and organic electroluminescence device using the same

Provided are an organic electroluminescence device, which shows high luminous efficiency, is free of any pixel defect, and has a long lifetime, and a material for an organic electroluminescence device for realizing the device. The material for an organic electroluminescence device is a compound having a n-conjugated heteroacene skeleton crosslinked with a carbon atom, nitrogen atom, oxygen atom, or sulfur atom. The organic electroluminescence device has one or more organic thin film layers including a light emitting layer between a cathode and an anode, and at least one layer of the organic thin film layers contains the material for an organic electroluminescence device.
Owner:IDEMITSU KOSAN CO LTD

Material for organic electroluminescence device and organic electroluminescence device using the same

Provided are an organic electroluminescence device, which: shows high luminous efficiency; is free of any pixel defect; and has a long lifetime, and a material for an organic electroluminescence device for realizing the device. The material for an organic electroluminescence device is a compound of a specific structure having a n-conjugated heteroacene skeleton crosslinked with a carbon atom, nitrogen atom, or oxygen atom. The organic electroluminescence device has one or more organic thin film layers including a light emitting layer between a cathode and an anode, and at least one layer of the organic thin film layers contains the material for an organic electroluminescence device.
Owner:IDEMITSU KOSAN CO LTD

Red phosphorescent compounds and organic electroluminescent devices using the same

Disclosed herein are red phosphorescent compounds of the following Formulas 1 to 4: wherein  is  R1, R2 and R3 are independently a C1-C4 alkyl group, R4, R5, R6 and R7 are independently selected from hydrogen, C1-C4 alkyl groups and C1-C4 alkoxy groups, and  is selected from 2,4-pentanedione, 2,2,6,6,-tetramethylheptane-3,5-dione, 1,3-propanedione, 1,3-butanedione, 3,5-heptanedione, 1,1,1-trifluoro-2,4-pentanedione, 1,1,1,5,5,5-hexafluoro-2,4-pentanedione, and 2,2-dimethyl-3,5-hexanedione; wherein  is  R1 and R2 are independently selected from C1-C4 alkyl groups and C1-C4 alkoxy groups, R3, R4, R5 and R6 are independently selected from hydrogen, C1-C4 alkyl groups and C1-C4 alkoxy groups, and  is selected from 2,4-pentanedione, 2,2,6,6,-tetramethylheptane-3,5-dione, 1,3-propanedione, 1,3-butanedione, 3,5-heptanedione, 1,1,1-trifluoro-2,4-pentanedione, 1,1,1,5,5,5-hexafluoro-2,4-pentanedione and 2,2-dimethyl-3,5-hexanedione; wherein  is  R1 and R2 are independently selected from C1-C4 alkyl groups and C1-C4 alkoxy groups, R3, R4, R5 and R6 are independently selected from hydrogen, C1-C4 alkyl groups and C1-C4 alkoxy groups, and  is selected from 2,4-pentanedione, 2,2,6,6,-tetramethylheptane-3,5-dione, 1,3-propanedione, 1,3-butanedione, 3,5-heptanedione, 1,1,1-trifluoro-2,4-pentanedione, 1,1,1,5,5,5-hexafluoro-2,4-pentanedione and 2,2-dimethyl-3,5-hexanedione; and wherein  is  R1 and R2 are independently selected from C1-C4 alkyl groups and C1-C4 alkoxy groups, R3, R4, R5 and R6 are independently selected from hydrogen, C1-C4 alkyl groups and C1-C4 alkoxy groups, and  is selected from 2,4-pentanedione, 2,2,6,6,-tetramethylheptane-3,5-dione, 1,3-propanedione, 1,3-butanedione, 3,5-heptanedione, 1,1,1-trifluoro-2,4-pentanedione, 1,1,1,5,5,5-hexafluoro-2,4-pentanedione and 2,2-dimethyl-3,5-hexanedione. Further disclosed herein is an organic electroluminescent (EL) device comprising an anode, a hole injecting layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injecting layer, and a cathode laminated in this order wherein one of the red phosphorescent compounds is used as a dopant of the light-emitting layer.
Owner:LG DISPLAY CO LTD

Aromatic amine derivatives and organic electroluminescence device using the same

Provided are an organic electroluminescence device and an aromatic amine derivative for realizing the device. The aromatic amine derivative improves the luminous efficiency of an organic electroluminescence device using the derivative, and its molecules hardly crystallize. The organic electroluminescence device has an organic thin film layer composed of one or a plurality of layers including at least a light emitting layer, the organic thin film layer being interposed between a cathode and an anode, and at least one layer of the organic thin film layer, especially a hole transporting layer contains the aromatic amine derivative alone or as a component of a mixture, so the organic electroluminescence device can be produced in improved yield, and has a long lifetime.
Owner:IDEMITSU KOSAN CO LTD

Aromatic amine derivatives and organic electroluminescence device using the same

Provided are: a novel aromatic amine derivative having an asymmetric structure; and an organic electroluminescence device having one or multiple organic thin film layers including at least a light emitting layer, the one or multiple organic thin film layers being interposed between a cathode and an anode. The aromatic amine derivative realizes the organic EL device capable of suppressing the crystallization of a molecule, improving yields upon production of the organic EL device, and having a long lifetime when at least one layer of the one or more multiple organic thin film layers contains the aromatic amine derivative alone or as a component of a mixture.
Owner:IDEMITSU KOSAN CO LTD

Carbon nanotube hybrid system using carbide-derived carbon, a method of making the same, an electron emitter comprising the same, and an electron emission device comprising the electron emitter

A carbon nanotube hybrid system includes: a carbide-derived carbon prepared by reacting a carbide compound and a halogen group containing gas to extract elements of the carbide compound except carbons; metals supported on the carbide-derived carbon or remaining in the carbide-derived carbon; and carbon sources from which carbon nanotubes are grown from the carbide-derived carbon. A method of preparing the carbon nanotube hybrid system includes preparing the carbide-derived carbon, extracting elements therefrom, and growing carbon nanotubes from the carbide-derived carbon. The carbon nanotube hybrid system has excellent uniformity and a long lifetime. An electron emitter having improved electron emitting properties can be inexpensively prepared using the carbon nanotube hybrid system compared to conventional carbon nanotubes. An electron emission device having excellent electron emitting properties can be prepared using the electron emitter.
Owner:SAMSUNG SDI CO LTD

Aromatic amine derivative and organic electroluminescence device using the same

The present invention provides an organic electroluminescence device which can be driven at a reduced voltage, hardly causes the crystallization of a molecule, can be produced in improved yield, and has a long lifetime because of difficulty of molecular crystallization, and aromatic amine derivatives for realizing the device. The aromatic amine derivatives are novel aromatic amine derivatives having a specific structure. The organic electroluminescence device includes an organic thin film layer formed of one or more layers including at least a light emitting layer, the organic thin film layer being interposed between a cathode and an anode. In the organic electroluminescence device, at least one layer of the organic thin film layer, especially a hole transporting layer, contains the aromatic amine derivative alone or as a component of a mixture.
Owner:IDEMITSU KOSAN CO LTD

Heterocyclic compound, light-emitting element, light-emitting device, electronic device, and lighting device

An object is to provide a novel heterocyclic compound which can be used for a light-emitting element, as a host material of a light-emitting layer in which a light-emitting substance is dispersed. Other objects are to provide a light-emitting element having low driving voltage, a light-emitting element having high current efficiency, and a light-emitting element having a long lifetime. Provided are a light-emitting element including a compound in which a dibenzo[f,h]quinoxaline ring and a hole-transport skeleton are bonded through an arylene group, and a light-emitting device, an electronic device, and a lighting device each using this light-emitting element. The heterocyclic compound represented by General Formula (G1) below is provided.
Owner:SEMICON ENERGY LAB CO LTD

Liquid crystal display device

The present invention has a pixel which includes a first switch, a second switch, a third switch, a first resistor, a second resistor, a first liquid crystal element, and a second liquid crystal element. A pixel electrode of the first liquid crystal element is electrically connected to a signal line through the first switch. The pixel electrode of the first liquid crystal element is electrically connected to a pixel electrode of the second liquid crystal element through the second switch and the first resistor. The pixel electrode of the second liquid crystal element is electrically connected to a Cs line through the third switch and the second resistor. A common electrode of the first liquid crystal element is electrically connected to a common electrode of the second liquid crystal element.
Owner:SEMICON ENERGY LAB CO LTD

Package for housing light-emitting element, light-emitting apparatus and illumination apparatus

InactiveUS20050133808A1Increasing radiation light intensityImprove cooling effectSolid-state devicesPrintingElectrical conductorEngineering
A light-emitting apparatus provides a ceramic-made base body, a frame body, a light-emitting element, a conductor layer and a light-transmitting member. The base body has on its upper surface a mounting portion for the light-emitting element. The frame body is joined to the upper surface of the base body so as to surround the mounting portion, with its inner peripheral surface shaped into a reflection surface. The wiring conductor has its one end formed on the upper surface of the base body and electrically connected to the light-emitting element, and has another end led to a side or lower surface of the base body. The light-transmitting member is disposed inside the frame body so as to cover the light-emitting element, which contains fluorescent materials for performing wavelength conversion. The base body is so designed that ceramic crystal grains range in average particle diameter from 1 to 5 μm.
Owner:KYOCERA CORP

Wireless Sensing Module and Method of Operation

A wireless sensing module with extended service life containing at least one sensor of a physical parameter, a data acquisition hardware acquiring output electrical signals from at least one sensor and converting it into digital measurement data, a microcontroller, a non-volatile memory, at least one transceiver for wireless communication with external wireless devices, at least one battery, including at least one re-chargeable battery, at least one energy harvesting device, a power management circuit, and at least one antenna. All components of the wireless sensing module are mounted on a printed circuit board and placed into an enclosure providing mechanical, chemical, electrical and environmental protection. The wireless sensing modules can be used in different applications, including long-term condition monitoring of structures.
Owner:GREEN SHM SYST

Material for organic electroluminescent device and organic electroluminescent device using same

Provided is a material for an organic electroluminescence device, which is composed of a compound having a specific structure; and is capable of providing an organic electroluminescence device having a high luminous efficiency, excellent heat resistance, and a long lifetime while having no pixel defects, and an organic electroluminescence device using the same. The organic electroluminescence device comprises an organic thin film layer composed of one or more layers including at least a light-emitting layer and sandwiched between a cathode and an anode. In the organic electroluminescence device, at least one layer of the organic thin film layer comprises the material for an organic electroluminescence device.
Owner:IDEMITSU KOSAN CO LTD

Aromatic amine derivative and organic electroluminescence device employing the same

A specified aromatic amine derivative having a chrysene structure. An organic electroluminescence device which comprises at least one organic thin film layer comprising a light emitting layer sandwiched between a pair of electrode consisting of an anode and a cathode, wherein at least one of the organic thin film layer comprises the aromatic amine derivative singly or as its mixture component. Organic electroluminescence devices having a long lifetime and a high efficiency of light emission, and aromatic amine derivatives capable of realizing such organic electroluminescence devices are provided.
Owner:IDEMITSU KOSAN CO LTD

Backlight device and flat display using it

An FPC (31) on which LEDs (32) are mounted at predetermined intervals in the longitudinal direction is secured to a lower chassis (21b) used also as a heat-dissipating plate through an elastic heat conductive sheet (34). With a retaining plate (33) is overlapped on the mounting surface of the FPC (31), a screw (S) is inserted into the retaining plate (33) from the outside of a bezel (5) to fix the retaining plate. Furthermore, the FPC (31) is held between the retaining plate (33) and the lower chassis (21b).
Owner:SHARP KK

Color OLED display with improved power efficiency

An OLED display device includes: an array of light emitting pixels, each pixel having red, green, and blue OLEDs and at least one additional colored OLED that expands the gamut of the display device relative to the gamut defined by the red, green and blue OLEDs, wherein the luminance efficiency or the luminance stability over time of the additional OLED is higher than the luminance efficiency or the luminance stability over time of at least one of the red, green, and blue OLEDs; and means for selectively driving the OLEDs with a drive signal to reduce overall power usage or extend the lifetime of the display while maintaining display color accuracy. In accordance with various embodiments, the present invention provides a color display device with improved power efficiency, longer overall lifetime, expanded color gamut with accurate hues, and improved spatial image quality.
Owner:GLOBAL OLED TECH

White light tandem OLED

A tandem white light-emitting OLED device is disclosed comprising a spaced anode and cathode, a light reflector associated with either the anode or the cathode, and at least two white light emitting units. The first white light-emitting unit has a set of at least two emission peaks in the blue and yellow spectral regions that are more intense than any other emission peaks that may be present in the emission spectrum of the first white light-emitting unit. The second white light-emitting unit is disposed closer to the reflector than the first white light-emitting unit and includes a set of at least three emission peaks in the blue, green, and red spectral regions that are more intense than any other emission peaks that may be present in the emission spectrum of the second white light-emitting unit. An intermediate connector is disposed between the first and second white light-emitting units.
Owner:GLOBAL OLED TECH

Horizontal linear vibrator

The present invention provides a horizontal linear vibrator which can reduce the thickness but increase the strength of vibrations while at the same time guaranteeing a sufficiently long lifetime and satisfactory responsivity. The horizontal linear vibrator includes a casing, a bracket, a vibration unit and springs. The casing defines an internal space therein. A first magnet is attached to an upper plate of the casing. The bracket is coupled to the lower end of the casing. The second magnet is attached to the bracket such that different poles of the first and second magnets face each other. The vibration unit has a weight, and a cylindrical coil which is provided in or under the weight. The springs are coupled to the sidewall plates of the casing or the bracket. The springs elastically support the vibration unit to allow the vibration unit to vibrate in the horizontal direction.
Owner:PARTRON

Quinoxaline derivative, and light-emitting element, light-emitting device, electronic device using the quinoxaline derivative

It is an object to provide a novel bipolar organic compound. In particular, it is an object to provide a bipolar organic compound excellent in thermal stability. Further, it is another object to provide a bipolar organic compound which is electrochemically stable. A quinoxaline derivative represented by a general formula (1) is provided. Further, since the quinoxaline derivative represented by the general formula (1) is bipolar, the use of the quinoxaline derivative of the present invention allows fabrication of a light-emitting element and a light-emitting device with a low driving voltage and low power consumption. Furthermore, a light-emitting element with high luminous efficiency can be obtained.
Owner:SEMICON ENERGY LAB CO LTD

Connector with conductor piercing prongs for a solar panel

The present invention comprises an electrical connector device for electrically connecting an alternating current (“AC”) photovoltaic (“PV”) solar panel device having an integral micro-inverter to the utility grid. The electrical connector device is a compression connector fitting that includes an upper and lower housing, which each include a channel for receiving the main electrical conductor line. The electrical connector device further includes three electrical prong, which are designed to pierce and penetrate the insulation of the main electrical conductor line to establish an electrical connection between the micro-inverter and the utility grid, when the electrical connector device is compressed about the main electrical conductor line. The shape of the channel formed in the electrical connector device has a distinctive cross-sectional shape that substantially corresponds to the shape of the main electrical conductor line to insure proper alignment and orientation of the main conductor line within the connector device.
Owner:SKY RICH STAR LTD

Nitrogenous heterocyclic derivative and organic elecrtroluminescent element employing the same

A specific derivative of heterocyclic compound having nitrogen atom and an organic electroluminescence device comprising the compound. An organic electroluminescence device comprising at least one of organic compound layers including a light emitting layer sandwiched between an anode and a cathode, wherein said at least one of the organic compound layers comprises the derivative of the heterocyclic compound having nitrogen atom as a sole component or as mixed component. The organic electroluminescence device achieves elevation of luminance and excellent efficiency of light emission, and also achieves long lifetime by an improvement of an electrode adhesion.
Owner:IDEMITSU KOSAN CO LTD

Desiccant film in top-emitting OLED

A top-emitting OLED device includes a substrate, a first electrode disposed over the substrate, and an organic EL media disposed over the first electrode. The device also includes a transparent or semitransparent second electrode disposed over the organic EL media, and a light transmissive desiccating film having a host and molecularly dispersed desiccant material in such host provided on or over the second electrode.
Owner:EASTMAN KODAK CO

Light-Emitting Device

To provide a long lifetime light-emitting element, in particular, to provide a long lifetime white light-emitting element, and to provide a light-emitting element having high luminous efficiency, in particular, to provide a white light-emitting element having high luminous efficiency. In a light-emitting element having, between an anode and a cathode, a first light-emitting layer containing a first light-emitting substance and a second light-emitting layer containing a second light-emitting substance which is provided to be in contact with the first light-emitting layer, the first light-emitting layer is divided into a layer provided on the anode side and a layer provided on the cathode side. At this time, a host material having a hole-transporting property is used for the layer provided on the anode side, and a host material having an electron-transporting property is used for the layer provided on the cathode side.
Owner:SEMICON ENERGY LAB CO LTD

Phosphor and production method of the same and light source and LED using the phosphor

A phosphor with high efficiency having an excitation band corresponding to light of the ultraviolet-visible (300 to 550 nm) wavelength region emitted from a light emitting element which emits blue or ultraviolet light is provided. Commercially available CaO [3N], Si3N4 [3N], and Eu2O3 [3N] are prepared, respective materials are weighed and mixed to have a mol ratio of CaO:Si3N4:Eu2O3=1.4775:1:0.01125, and then the mixture is heated to 1600° C. by a heating rate of 15° C. / min under a nitrogen atmosphere and retained and fired at 1600° C. for three hours. Thereafter, the raw materials are cooled down from 1600° C. to 200° C. for an hour to thereby produce a phosphor having a composition formula Ca1.58Si3O1.63N4.35:Eu0.024.
Owner:DOWA ELECTRONICS MATERIALS CO LTD

Pyrene compounds and organic electroluminescent devices using the same

A pyrene compound is provided. The pyrene compound is represented by Formula 1:wherein A1 and A2 are as defined in the specification. Further provided is an organic electroluminescent device using the pyrene compound. The organic electroluminescent device has high color purity of blue light and shows long life characteristics. Therefore, the organic electroluminescent device is suitable for use in displays and lighting systems.
Owner:SFC CO LTD

Organic Light-Emitting Diode With High Efficiency And Long Lifetime

An organic light-emitting diode with high efficiency and long lifetime includes a first electrode, a second electrode facing the first electrode and an emissive layer between the first electrode and the second electrode, wherein the emissive layer includes a luminescent material that allows for the emission of deep blue light at high efficiency with a long lifetime.
Owner:SFC CO LTD

Disposable couplings for biometric instruments

Photoacoustic measurement system are configured with a special view towards efficient coupling of optical and acoustic energy between respective transducers and a tissue test site. In particular, a disposable substrate provides support for advanced optical paths including, for example, windows, lenses, and index matching gels or fluids. In addition, substrates may also accommodate arrays of coupling sites corresponding to a plurality of acoustic detectors spatially separated. These substrates may additionally include means to affix and secure the device to a measurement head having optoelectronic and electromechanical transducers therein. Further, these substrates include mechanisms which help to affix the substrates to test sites in stabile and secure fashion.
Owner:PAGE JOSEPH +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products