Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2780 results about "Emission spectrum" patented technology

The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an atom or molecule making a transition from a high energy state to a lower energy state. The photon energy of the emitted photon is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated wavelengths, make up an emission spectrum. Each element's emission spectrum is unique. Therefore, spectroscopy can be used to identify the elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.

Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices

Organic light emitting devices are described wherein the emissive layer comprises a host material containing a fluorescent or phosphorescent emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, wherein an intersystem crossing molecule of optical absorption spectrum matched to the emission spectrum of the emissive molecule enhances emission efficiency.
Owner:THE TRUSTEES FOR PRINCETON UNIV +1

Organometallic Complex, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device

As a novel substance having a novel skeleton, an organometallic complex having high emission efficiency and improved color purity is provided. The color purity is improved by reducing the half width of an emission spectrum. The organometallic complex is represented by General Formula (G1). In General Formula (G1), at least one of R1 to R4 represents a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and the others each independently represent hydrogen or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms. Note that the case where all of R1 to R4 represent alkyl groups each having 1 carbon atom is excluded. Further, R5 to R9 each independently represent hydrogen or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
Owner:SEMICON ENERGY LAB CO LTD

Organometallic Complex, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device

As a novel substance having a novel skeleton, an organometallic complex with high emission efficiency which achieves improved color purity by a reduction of half width of an emission spectrum is provided. One embodiment of the present invention is an organometallic complex in which a β-diketone and a six-membered heteroaromatic ring including two or more nitrogen atoms inclusive of a nitrogen atom that is a coordinating atom are ligands. In General Formula (G1), X represents a substituted or unsubstituted six-membered heteroaromatic ring including two or more nitrogen atoms inclusive of a nitrogen atom that is a coordinating atom. Further, R1 to R4 each represent a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
Owner:SEMICON ENERGY LAB CO LTD

UV-Curing Apparatus Provided With Wavelength-Tuned Excimer Lamp and Method of Processing Semiconductor Substrate Using Same

A UV irradiation apparatus for processing a semiconductor substrate includes: a UV lamp unit having at least one dielectric barrier discharge excimer lamp which is constituted by a luminous tube containing a rare gas wherein an inner surface of the luminous tube is coated with a fluorescent substance having a peak emission spectrum in a wavelength range of 190 nm to 350 nm; and a reaction chamber disposed under the UV lamp unit and connected thereto via a transmission window.
Owner:ASM IP HLDG BV

Light emitting device with blue light LED and phosphor components

InactiveUS7026756B2Low degree of deterioration in emission light intensityIncrease brightnessMechanical apparatusDischarge tube luminescnet screensIndiumPhosphor
A light emitting device includes a light emitting component having an active layer of a semiconductor and a phosphor capable of absorbing a part of light emitted from the light emitting component and emitting light of wavelength different from that of the absorbed light, wherein the light emitting component is a LED which has an active layer constituting a gallium nitride based semiconductor containing Indium and is capable of emitting a blue color light with a peak wavelength within the range from 420 to 490 nm. The phosphor is a garnet fluorescent material activated with cerium which is capable of absorbing a part of the blue color light and thereby emitting light having a broad emission spectrum with a peak wavelength existing around the range from 510 to 600 nm and a tail continuing into the region from 700 to 750 nm.
Owner:NICHIA CORP

Light-Emitting Element and Lighting Device

To provide a light-emitting element whose power efficiency is improved and which emits light of natural color like light bulb color. In the light-emitting element, at least three light-emitting units are stacked. The emission spectrum of the light-emitting element has two peaks. One of the two peaks is obtained by combining spectra of light emitted from two light-emitting units. The peak is in the yellow to orange wavelength range and has a wavelength greater than or equal to 560 nm and less than 580 nm. Thus, a wavelength range of high luminosity can be used and the power efficiency can be improved. The color of light emitted from the light-emitting element is close to a blackbody locus in a chromaticity diagram, and light of natural color like light bulb color can be achieved.
Owner:SEMICON ENERGY LAB CO LTD

Thermal Emission Non-Invasive Analyte Monitor

An improved method and an improved instrument for analyte determination that uses infrared radiation naturally emitted by subject are disclosed. The method is based on Thermal Emission Spectroscopy (TES) whereby the spectral signal is measured in reference to a body's physiological and ambient parameters. The instrument that realizes the method incorporates temperature and humidity sensors. Ambient environmental parameters and subject parameters as disclosed allow normalization of spectrally specific analyte signal for grater precision and accuracy of analytes concentration determination. Such improvement leads to a universal calibration in, for example, non-invasive blood glucose measurements in human subjects.
Owner:BUCHERT JANUSZ MICHAL

Fluorescent material and light-emitting device

The present invention provides a fluorescent material comprising a light-storing first phosphor that at least partially converts energy emitted by an excitation source to a first emission spectrum that is different from the energy, and a second phosphor that at least partially converts the first emission spectrum to a second emission spectrum that is different from the first emission spectrum; a lamp equipped with such a fluorescent material; a light-emitting device that produces a whitish afterglow, comprising such a fluorescent material for converting the emission by an LED chip; and a display unit comprising a display equipped with a plurality of such light-emitting devices.
Owner:NICHIA CORP

In-situ process state monitoring of chamber

The process state of a chamber after a maintenance procedure can be monitored in-situ in order to ensure that the chamber is ready for processing, while minimizing waste and downtime due to aftereffects of the maintenance procedure. The composition of a bulk plasma in a process chamber can be analyzed using an analytical tool to capture the emission spectrum of the plasma. The spectrum can be analyzed to generate a model of the current chamber conditions, which can be compared to a model of ideal chamber conditions using a statistical analysis approach such as multivariate primary component analysis. If the current and ideal models match to within a set confidence level, the chamber conditions are acceptable for processing devices, and any processing of cycling workpieces or other plasma-cleansing processes can be stopped.
Owner:APPLIED MATERIALS INC

Solid state illumination system

An illumination system comprises at least two light sources (101,102,103) having different emission spectra to one another; a detection circuit (131,132,133) for sensing a light intensity using at least one of the light sources as a photosensor; and driving means (161,162,163) for driving the light source in dependence on the sensed spectral distribution of light. The emission spectrum of a light source with the smallest bandgap overlaps the emission spectrum of a light source with the second-smallest bandgap. The illumination system is possible to measure the intensity of light emitted by the light source with the smallest bandgap by putting the light source with the second-smallest bandgap in detection mode. The illumination system may also sense the spectral distribution of ambient light, to allow the output from the illumination system to be adjusted in dependence on the ambient light.
Owner:SHARP KK

Broadband light emitting device

The invention concerns a superluminescent light emitting diode (SLED) comprising a semiconductor heterostructure forming a PN junction and a waveguide. The semiconductor heterostructure includes a gain region with a contact means for biasing the PN junction so as to produce light emission including stimulated emission from an active zone of the gain region, and in the active zone a plurality of quantum dot layers, each quantum dot layer made up of a plurality of quantum dots and a plurality of adjoining layers, each adjoining layer adjacent to one of said quantum dot layers. The material composition or a deposition parameter of at least two adjoining layers is different. This ensures an enhanced emission spectral width.
Owner:EXALOS

Light-emitting element, lighting device, light-emitting device, and electronic device

A light-emitting element includes a first electrode; a first light-emitting layer over the first electrode, containing a first phosphorescent compound and a first host material; a second light-emitting layer over the first light-emitting layer, containing a second phosphorescent compound and a second host material; a third light-emitting layer over the second light-emitting layer, containing a third phosphorescent compound and a third host material; and a second electrode over the third light-emitting layer. Between peaks of emission spectra of the first, second, and third phosphorescent compounds, the peak of the emission spectrum of the second phosphorescent compound is on the longest wavelength side and that of the emission spectrum of the third phosphorescent compound is on the shortest wavelength side. The third host material has higher triplet excitation energy than the first host material and the second host material.
Owner:SEMICON ENERGY LAB CO LTD

Light emitting device

An object of the present invention is to provide a light emitting device exhibiting a superior emission efficiency which enables easy adjustment of an emission spectrum.The above object is achieved by a light emitting device comprising a semiconductor light emitting element and a phosphor layer, which has an area A and an area B of different emission spectra, and in which a plurality of phosphor portions are disposed on a plane such that identical phosphor portions do not adjoin one another, and the surface area occupied by specific phosphor portions in the phosphor layer is different in area A and area B.
Owner:MITSUBISHI CHEM CORP

White light LED devices with flat spectra

A light emitting apparatus including a phosphor blend including two or more phosphors to provide an emission spectrum simulating the spectral power distribution of a CIE reference illuminant across at least a certain spectral range. Such an apparatus is particularly suited for color-critical applications.
Owner:GE LIGHTING SOLUTIONS LLC

Wafer level phosphor coating technique for warm light emitting diodes

Methods for wafer level fabricating of light emitting diode (LED) chips are disclosed with one embodiment of a method according to the present invention comprising providing a plurality of LEDs and then coating of the LEDs with a layer of first conversion material so that at least some light from the LEDs passes through the first conversion material. The light is converted to different wavelengths of light having a first conversion material emission spectrum. The LEDs are then coated with a layer of second conversion material arranged on the first layer of conversion. The second conversion material has a wavelength excitation spectrum, and at least some light from the LEDs passes through the second conversion material and is converted. The first conversion material emission spectrum does not substantially overlap with the second conversion material excitation spectrum. Methods according to the present invention can also be used in wafer level fabrication of LED chips and LED packages with pedestals for electrically contacting the LEDs through the conversion coatings.
Owner:CREELED INC

White lamps with enhanced color contrast

A lighting apparatus for emitting white light including a semiconductor light source emitting radiation with a peak at from about 250 nm to about 500 nm; a first phosphor having a peak emission between about 450 and 550 nm; and a second phosphor having a peak emission between about 615 and 670 nm; wherein the overall emission spectrum of the lighting apparatus has a depression between about 550 and 615 nm, said depression extending to between about 5% and 25% of the highest intensity of the emission spectrum of the lighting apparatus in the region from 400 to 700 nm. In this apparatus, the red-green color contrast is increased versus the referent illuminant.
Owner:CONSUMER LIGHTING (U S) LLC +1

Devices and techniques for light-mediated stimulation of trabecular meshwork in glaucoma therapy

An apparatus and technique for transscleral light-mediated biostimulation of the trabecular plates of a patient's eye in a treatment for glaucoma or ocular hypertension. The apparatus includes; (i) a working end geometry for contacting the anterior surface of the sclera and cornea to insure that a laser emission reaches the trabecular meshwork from a particular location on the anterior surface of the sclera, (ii) a laser energy source providing a wavelength appropriate for absorption beneath the anterior scleral surface to the depth of the trabecular plates, and (iii) a dosimetry control system for controlling the exposure of the laser emission at the particular spatial locations. The device uses a light energy source that emits wavelengths in the near-infrared portion of the spectrum, preferably in the range of about 1.30 mum to 1.40 mum or from about 1.55 mum to 1.85 mum. The depth of absorption of such wavelength ranges will extend through most, if not all, of the thickness of the sclera (750 mum to 950 mum). In accordance with a proposed method of trabecular biostimulation, the targeted region is elevated in temperature to a range between about 40° C. to 55° C. for a period of time ranging from about 1 second to 120 seconds or more.
Owner:SOLX

Regulation of Wavelength Shift and Perceived Color of Solid State Lighting with Intensity and Temperature Variation

Exemplary embodiments of the invention provide a system, apparatus, and method of controlling an intensity and spectrum of light emitted from a solid state lighting system. The solid state lighting has a first emitted spectrum at full intensity and at a selected temperature, with a first electrical biasing for the solid state lighting producing a first wavelength shift, and a second electrical biasing for the solid state lighting producing a second, opposing wavelength shift. Exemplary embodiments provide for receiving information designating a selected intensity level or a selected temperature; and providing a combined first electrical biasing and second electrical biasing to the solid state lighting to generate emitted light having the selected intensity level and having a second emitted spectrum within a predetermined variance of the first emitted spectrum over a predetermined range of temperatures.
Owner:CHEMTRON RES

Method and system for automatically creating crosstalk-corrected data of a microarray

A method and system are disclosed for automatically creating crosstalk-corrected data of a microarray utilizing calibration dye spots each of which comprises a single pure dye. A microarray scanner, such as a confocal laser microarray scanner, generates dye images, each of which contains at least one of the calibration dye spots for each of the output channels of the scanner. For each of the calibration dye spots, an output of each of the output channels is measured to obtain output measurements. A set of correction factors is computed from the output measurements to correct the data subsequently gathered from the microarray scanner. In other words, the correction factors are applied to quantitation or measurement data obtained from microarray images which contain spots having dyes of known or unknown excitation or emission spectra to obtain crosstalk-corrected data.
Owner:PACKARD BIOSCI +1

Light emitting element and light emitting device

A high efficient white emission light emitting element having peak intensity in each wavelength region of red, green, and blue is provided. Specifically, a white emission light emitting element having an emission spectrum that is independent of current density is provided. A first light emitting layer 312 exhibiting blue emission and a second light emitting layer 313 containing a phosphorescent material that generates simultaneously phosphorescent emission and excimer emission are combined. In order to derive excimer emission from the phosphorescent material, it is effective to disperse a phosphorescent material 323 having a high planarity structure such as platinum complex at a high concentration of at least 10 wt % to a host material 322. Further, the first light emitting layer 312 is provided to be in contact with the second light emitting layer 313 at the side of an anode. Ionization potential of the second light emitting layer 313 is preferably larger by 0.4 eV than that of the first light emitting layer 312.
Owner:SEMICON ENERGY LAB CO LTD

Phosphor mixture and light emitting device using the same

In order to provide a phosphor mixture which contains four or more kinds of phosphors comprising a red phosphor, an orange phosphor, a blue phosphor, and a green phosphor, and produce emission having excellent color rendering not only in the case of white light at a high color temperature, but also in the case of emission in warm white which is low in color temperature, and a light emitting device including the phosphor mixture and a light-emitting section, CaAlSiN3:Eu and CaAl2Si4N8:Eu are manufactured as a red phosphor and an orange phosphor respectively, and ZnS:Cu, Al, and BAM:Eu are prepared as a green phosphor and a blue phosphor respectively. Then the emission spectrums of these four kinds of phosphors are measured and a relative mixing ratio at which the correlated color temperature of the phosphor mixture becomes a targeted color temperature is determined from the emission spectrum by simulation, and a phosphor mixture is obtained by weighing and mixing the respective phosphors based on the simulation result.
Owner:NICHIA CORP +1

Tandem cell for water cleavage by visible light

A tandem cell or photoelectrochemical system for the cleavage of water to hydrogen and oxygen by visible light has two superimposed photocells, both cells being connected electrically. The photoactive material in the top cell is a semiconducting oxide placed in contact with an aqueous solution. This semiconducting oxide absorbs the blue and green part of the solar emission spectrum of a light source or light sources and generates with the energy collected oxygen and protons from water. The not absorbed yellow and red light transmits the top cell and enters a second photocell, the bottom cell, which is mounted, in the direction of the light behind, preferably directly behind the top cell. The bottom cell includes a dye-sensitized mesoporous photovoltaic film. The bottom cell converts the yellow, red and near infrared portion of the sunlight to drive the reduction of the protons, which are produced in the top cell during the photo catalytic water oxidation process, to hydrogen.
Owner:ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Systems and methods for performing rapid fluorescence lifetime, excitation and emission spectral measurements

Exemplary systems and methods for obtaining information associated with at least one portion of a sample can be provided. For example, a first radiation can be received and at least one second radiation and at least one third radiation can be provided as a function of the first radiation. Respective intensities of the second and third radiations can be modulated, whereas the second and third radiations may have different modulation frequencies, and the modulated second and third radiations can be directed toward the portion. The photoluminescence radiation can be received from the portion based on the modulated second and third radiations to generate a resultant signal. The signal can be processed to obtain the information which is / are photoluminescence lifetime characteristics and / or a polarization anisotropy of the portion. According to another exemplary embodiment, the photoluminescence radiation can be received and the photoluminescence radiation may be based on wavelengths thereof.
Owner:THE GENERAL HOSPITAL CORP

Organic light emitting element and a light emitting device using the same

The present invention provides a white organic light-emitting element high in the emission efficiency. In particular, the invention provides a white organic light-emitting element that has an emission spectrum having peaks in the respective wavelength regions of red color, green color and blue color and is high in the emission efficiency. Since a spectrum region lowest in the emission efficiency is a red region, by introducing a reddish phosphorescent material, a highly efficient white organic light-emitting element is obtained. At this time, in order to inhibit the reddish phosphorescent material from singularly emitting, as shown in FIG. 1, a distance between a second emission region 114 where a reddish phosphorescent material 124 is a luminescent material and a first emission region 113 that exhibits emission in a shorter wavelength side than the second emission region is separated. In a configuration shown in FIG.1, it is preferable to use an electron transport material in a layer 115 between the first emission region and the second emission region and more preferable to use a hole block material.
Owner:SEMICON ENERGY LAB CO LTD

Color OLED device having improved performance

A color OLED device is described having one or more pixels, at least one pixel comprising: four or more light-emitting elements, each light-emitting element comprising one or more layers of electroluminescent organic material producing a broadband light having a variable frequency-dependent luminous efficacy emission spectrum, and each light-emitting element further comprising a filter for filtering the broadband light and emitting a different color of light; wherein the different colors of light emitted by three of the light-emitting elements specify a first color gamut of the OLED device, and an additional one or more of the light-emitting elements emit at least one additional different color of light and wherein the frequency range of the filter of the additional light emitting element is matched to a portion of the broadband light frequency range having a radiant intensity greater than the radiant intensity of the frequency range of at least one of the filters of the three light-emitting elements specifying the first color gamut of the OLED device, and the additional one or more light emitting elements having luminous efficiency greater than that of at least one of the three light emitting elements specifying the first color gamut.
Owner:GLOBAL OLED TECH

Broadband light tandem OLED display

ActiveUS20070001588A1Increase volumeImproved color purity and efficiency and lifetimeDischarge tube luminescnet screensElectroluminescent light sourcesDisplay deviceBroadband
A tandem OLED display for producing broadband light having at least two spaced electrodes includes two or more broadband light-emitting units disposed between the electrodes, at least two of which produce light having different emission spectra and wherein at least one of such broadband light-emitting units does not produce white light, and an intermediate connector disposed between adjacent light-emitting units.
Owner:GLOBAL OLED TECH

Luminescence-optical method and sensor layer for quantitative determination of at least one chemical component of a gaseous or liquid sample

In a sensor layer for quantitative determination of at least one chemical component in a gaseous or liquid sample medium containing a chromophore which is directly or indirectly responsive to the component being determined by changing its absorption spectrum, and a luminophore which is not responsive to the component being determined, where there is an at least partial overlap between the emission spectrum of the luminophore and the absorption spectrum of the chromophore, and where the energy transfer between luminophore and chromophore produces a measurable change in at least one luminescence characteristic of the luminophore, the luminophore L and the chromophore GAMMA are ionic substances with differing electrical charges, which are incorporated in a matrix material that is permeable to the chemical component being determined.
Owner:AVL MEDICAL INSTR

Light-emitting device having semiconductor nanocrystal complexes

Light-emitting devices are provided that incorporate one or more underlying LED chips or other light sources and a layer having one or more populations of nanoparticles disposed over the light source. The nanoparticles may absorb some light emitted by the underlying source, and re-emit light at a different level. By varying the type and relative concentration of nanoparticles, different emission spectra may be achieved. White light and specialty-color emission may be achieved. Devices also may include multiple LED chips, with nanoparticles disposed over one or more underlying chips in an array.
Owner:SAMSUNG ELECTRONICS CO LTD

White lamps with enhanced color contrast

A lighting apparatus for emitting white light including a semiconductor light source emitting radiation with a peak at from about 250 nm to about 500 nm; a first phosphor having a peak emission between about 450 and 550 nm; and a second phosphor having a peak emission between about 615 and 670 nm; wherein the overall emission spectrum of the lighting apparatus has a depression between about 550 and 615 nm, said depression extending to between about 5% and 25% of the highest intensity of the emission spectrum of the lighting apparatus in the region from 400 to 700 nm. In this apparatus, the red-green color contrast is increased versus the referent illuminant.
Owner:CONSUMER LIGHTING (U S) LLC +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products