Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5647results about How to "The synthesis process is simple" patented technology

Self-healing polyurethane resin containing disulfide bond and preparation method thereof

InactiveCN105482065ARepair damageStrong performance controllabilitySelf-healingPolyester
The invention relates to self-healing polyurethane resin containing disulfide bond and a preparation method thereof. The polyurethane resin comprises, by weight parts, 10-30 parts of polyether or polyester polyol, 3-20 parts of polyisocyanates, 1-10 parts of chain extender containing the disulfide bond, 0.001-1 part of organic tin or tertiary amine catalyst and 50-80 parts of organic solvent. The method for preparing the self-healing polyurethane resin containing the disulfide bond comprises the steps of weighing raw materials, stirring, heating and performing dehydration for the polyether or polyester polyol under vacuum conditions, lowering the temperature to 85 DEG C or below, adding the polyisocyanates and the organic tin or tertiary amine catalyst, reacting, lowering the temperature to 50 DEG C or below, adding the organic solvent and the chain extender containing the disulfide bond, reacting and performing vacuum defoamation to obtain the self-healing polyurethane resin. The self-healing polyurethane resin heals by itself under the heating or ultraviolet (UV) light conditions, the required conditions are mild, the healing speed is high, the effect is good, the preparation method is simple and easy to control, and raw materials are goods of commercialized production and are cheap and easy to obtain.
Owner:DONGHUA UNIV

Preparation method of carbon quantum dots with adjustable fluorescence colors

The present invention relates to a preparation method of carbon quantum dots with adjustable fluorescence colors, and belongs to the technical field of nanometer materials. According to method, citric acid or a citrate is adopted as a carbon source, a nitrogen-containing compound is adopted as a nitridation agent, hydrogen peroxide is adopted as an oxidant, a hydrothermal synthesis method is adopted to obtain an aqueous solution of carbon quantum dots emitting blue or green fluorescence under ultraviolet light excitation, reaction conditions are easily controlled, and the method is suitable for scale production. The prepared carbon quantum dots have advantages of adjustable fluorescence color, high yield, high quantum efficiency, good result reproducibility and the like, wherein the product can be directly used for tumor cell labeling and live cell imaging labeling. According to the present invention, only the one reactant is required, the raw materials are easily-available and non-toxic, the production process does not require special protection, the reaction condition is easily controlled, and the obtained carbon quantum dots have advantages of high yield, high quantum efficiency, good result reproducibility and the like; and the method has characteristics of high yield, simple preparation process, low cost, easy scale production and the like.
Owner:UNIVERSITY OF CHINESE ACADEMY OF SCIENCES

Amido-containing ionic liquid used for absorbing acidic gases and preparation method and application thereof

The invention provides an amido-containing ionic liquid used for absorbing acidic gases and a preparation method and application thereof and in particular relates to a method for absorbing acidic gases of CO2, H2S, SO2 and the like by using an amido-containing ionic liquid. The amido-containing ionic liquid comprises one or more of primary amine, secondary amine and tertiary amine, wherein positive ions of the ionic liquid are derived from organic polyamines, negative ions of the ionic liquid are derived from inorganic acid or organic acid, and the ionic liquid is prepared by mixing the organic polyamines with the inorganic acid or organic acid and then carrying out neutralization reaction through acid and alkali. The ionic liquid has the advantages of low cost, simple preparation method,strong absorbing capability and short balance time, can be used for the enriching of acidic gases, the deacidification refining of acid-containing gases of natural gas, refinery gas, methane, coal gas, synthesis gas, coke-oven gas, pyrolysis gas, smoke, motor vehicle tail gas and the like and the purification of gases under a proper space and an operating environment; meanwhile, the ionic liquid absorbing the acidic gases can release the acidic gases through pressure reduction and temperature raise, thus the absorbing capability of the ionic liquid is restored and the multiple absorption property of the ionic liquid is better.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

Method for preparing cathode material of sodium-ion battery, namely sodium vanadium fluorophosphates

The invention discloses a method for preparing a cathode material of a sodium-ion battery, namely sodium vanadium fluorophosphates. The method comprises the following steps: using a vanadium source, a phosphorus source and a carbon source as main synthetic raw materials; dissolving into deionized water according to the molar ratio 1:1:1.2 of vanadium: phosphorus: carbon, heating in water bath, and continuously stirring to obtain light green pulp; after vacuum drying, grinding, then transferring into a tube furnace, preburning in an inert atmosphere at a certain temperature rise rate, cooling and then taking out to obtain black VPO4/C precursor powder; mixing the VPO4/C with NaF according to a stoichiometric ratio, ball-milling for 3 hours, sending into the tube furnace, then roasting in the inert atmosphere at the certain temperature rise rate, and cooling along with the furnace to obtain a positive active material NaVPO4F/C. According to the invention, cheap and easily-obtained pentavalent vanadium oxide or trivalent vanadium oxide is used as the main raw materials to prepare the sodium vanadium fluorophosphates cathode material through a sol gel activated auxiliary two-step high-temperature solid phase method, and the sodium vanadium fluorophosphates cathode material has the advantages of good stability, uniform particle size and good electrochemical performance. Meanwhile, the method has the advantages of simple synthesis process, short period and low cost and is convenient for large-scale production.
Owner:TIANJIN POLYTECHNIC UNIV

Composite catalytic electrode for producing oxygen by electrolyzing water, and preparation method and application thereof

The invention discloses a composite catalytic electrode for producing oxygen by electrolyzing water, and a preparation method and application thereof. The electrode expression is Ni(OH)2/Ni3S2/Ni, wherein a Ni(OH)2 lamina is used as an outer layer coating layer, Ni3S2 nanoparticles are used as an active substance, and Ni foam is used as a conducting substrate. The preparation method comprises the following steps: carrying out ultrasonic cleaning on a metal nickel source sequentially with deionized water, alcohol and acetone; impregnating the pretreated metal nickel source in a sulfur source water solution, adding into a high-pressure autoclave, and carrying out hydrothermal reaction at 140-200 DEG C for 1-8 hours; and cooling, taking out the sulfurized metal nickel, rinsing with deionized water, and carrying out vacuum drying. The composite electrode for electrolyzing water has ultralow water electrolysis overpotential and high current density, obviously reduces the electric power consumption, and thus, has important application in the field of water electrolysis. Meanwhile, the composite electrode synthesis method is simple, has the advantage of low cost for raw materials and synthesis, and is suitable for application in water electrolysis industry.
Owner:ZIBO ANZE STANDARD GAS CO LTD

Sugar-based quaternary ammonium salt gemini surfactant and synthesis method thereof

The invention discloses a sugar-based quaternary ammonium salt gemini surfactant, which has a general structural formula, wherein a sugar base is a glucose base; R is the long-chain alkyl of C8 to C18; X is chlorine, bromine or iodine; m is equal to 1 to 2; and n is equal to 1 to 2. A synthesis method for the surfactant is simple, comprises the steps of directly synthesizing dihalogenated glycoside and performing quaternization reaction, ensures simple synthesis process and low requirements on equipment and is suitable for industrialization. A sugar-based quaternary ammonium salt structurally has nonionic glucose hydrophilic groups and cationic bisquaternary ammonium salt hydrophilic groups. The product has the bactericidal property, antistatic behavior and hard water resistance of a cationic surfactant, relatively lower irritation, and the high performance of a gemini surfactant as the gemini surfactant, can be compounded with an anionic surfactant to realize synergism, is a multifunctional surfactant, can be widely applied to the industries of textile, papermaking, cosmetics, mining and the like, and has potential application prospect.
Owner:ZHENGZHOU UNIVERSITY OF LIGHT INDUSTRY

Acrylonitrile copolymer spinning solution with high molecular weight and narrow distribution and preparation method thereof

The invention discloses an acrylonitrile copolymer spinning solution and a preparation method thereof. The spinning solution is a mixed solvent solution of an acrylonitrile copolymer; the acrylonitrile copolymer is formed by polymerization of a first acrylonitrile monomer and a comonomer, and the comonomer comprises unsaturated carboxylic acid monomers; the mass of the first acrylonitrile monomer is 90-99.5% of the total mass of monomers, and the mass of the comonomer is 0.5-10% of the total mass of monomers; the mixed solvent is a mixture comprising dimethyl sulfoxide and at least one of water, alcohol solvents and ketone solvents; and the mass percent concentration of the monomers in the spinning solution is 15-30%. In the invention, the mixed solvent of the dimethyl sulfoxide is adopted in the process of acrylonitrile copolymerization, and the proportion of each solvent is controlled to carry out copolymerization reaction in homogeneous phases; and meanwhile, the second comonomer is continuously replenished in a certain time of reaction to stabilize the instantaneous composition of the acrylonitrile copolymer to obtain the polyacrylonitrile copolymer spinning solution with high molecular weight, narrow molecular weight distribution and uniform chain structure.
Owner:INST OF CHEM CHINESE ACAD OF SCI

Preparation method of hyperbranched polymer-modified nano-silicon dioxide hybrid material

The invention relates to a preparation method of a hyperbranched polymer-modified nano-silicon dioxide hybrid material. The preparation method comprises the following steps: grafting a mercapto group-containing silane coupling agent to the surface of nano-silicon dioxide, utilizing a surface mercapto group and polyfunctional acrylic ester to perform click reaction to form the modified nano-silicon dioxide with the tail end of the acrylic ester, further performing the click reaction with a polyfunctional mercapto compound to form the modified silicon dioxide with the tail end of the mercapto group, repeating the operation between the polyfunctional acrylic ester and the polyfunctional mercapto compound for multiple times, and forming a hyperbranched polymer on the surface of the silicon dioxide. The hyperbranched polymer-modified nano-silicon dioxide hybrid material prepared by the preparation method provided by the invention has the mercapto group at the tail end and a hyperbranched structure, when the hyperbranched polymer-modified nano-silicon dioxide hybrid material is applied in an ultraviolet curing coating, the heat resistance, the hardness, the wear resistance and other mechanical properties of the coating can be improved, and the hyperbranched polymer-modified nano-silicon dioxide hybrid material can particularly solve the problems of dispersion and migration of the nano-silicon dioxide in the ultraviolet curing coating and the problem of oxygen polymerization inhibition of the ultraviolet curing coating.
Owner:TAIYUAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products