Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2061results about How to "High breaking strength" patented technology

Preparation method of graphene-polyester nano-composite fiber

The invention discloses a preparation method of graphene-polyester nano-composite fiber. The preparation method comprises the step of preparing graphene-terylene polyester composite master batch and the step of preparing the graphene-polyester nano-composite fiber from the composite master batch. Compared with other conventional methods, the preparation method has the advantages that the technology is extremely simple, the reinforcing material is excellent in performance and low in cost; besides, excellent mechanical property and functional characteristics of graphene self endow the nano-composite fiber with functionalities like high strength and antistatic property, surface-modified and modified graphene has good dispersity and perfect interfacial compatibility in terylene polyester polymer matrix, which enables graphene to be effectively and uniformly compounded with a terylene polyester chip base material.
Owner:NANTONG QIANGSHENG GRAPHENE TECH CO LTD

High-scratch-resistance abrasion-resistant coating material and preparation method thereof

The invention provides a high-scratch-resistance abrasion-resistant coating material and a preparation method thereof. The preparation method comprises the following steps: modifying the graphene surface by using active groups by a chemical modification technique to obtain modified graphene, and blending the modified graphene with polysiloxane to obtain the high-scratch-resistance abrasion-resistant nano composite coating material. The surface modification is carried out to enhance the dispersity of the graphene and the interactions between the graphene and polysiloxane matrix, thereby enhancing the mechanical properties of the coating. No pigment or filler is added. The scratch resistance of the transparent graphene/polysiloxane composite coating is enhanced by 140% or above, and the abrasion loss is reduced by 60% or above. The transparent graphene/polysiloxane composite coating has excellent adhesion, heat resistance, weather resistance, flame retardancy and corrosion resistance. The graphene/polysiloxane composite coating can be used for surface protection and shielding of various metals, plastics, wood, concrete, glass and other substrates, and is applicable to the fields of automobile paints, photoelectric materials, precision instruments, marine heavy-corrosion protection, buildings and the like.
Owner:FUDAN UNIV

Device and process for heating III-V wafers, and annealed III-V semiconductor single crystal wafer

A device for heat treating (annealing) a III-V semiconductor wafer comprises at least one wafer support unit which is dimensioned such that a cover provided above the wafer surface is either spaced without any distance or with a distance of maximally about 2 mm to the wafer surface. A process for heat treating III-V semiconductor wafers having diameters larger than 100 mm and a dislocation density below 1×104 cm−2 is carried out in the device of the invention. SI GaAs wafers produced have an at least 25% increased characteristic fracture strength (Weibull distribution), an improved radial macroscopic and mesoscopic homogeneity and an improved quality of the mechano-chemically polished surface. The characteristic fracture strength is higher than 1900 MPa.
Owner:FREIBERGER COMPOUND MATERIALS

Tamper-resistant dosage form containing one or more particles

The invention relates to a tamper-resistant pharmaceutical dosage form comprising one or more particles, wherein each of said one or more particlescomprises a pharmacologically active ingredient and a physiologically acceptable polymer;has a breaking strength of at least 300 N;has a weight of at least 2 mg; andoptionally, comprises a film-coating;wherein the total weight of the pharmaceutical dosage form is greater than the total weight of said one or more particles.
Owner:GRUNENTHAL GMBH

Preparation method for carbon/carbon-copper composite material

The invention relates to a preparation method for a carbon/carbon-copper composite material, which belongs to the technical field of special carbon fiber composite materials. The preparation method mainly comprises the following preparation processes: preparation of carbon fiber green bodies; preparation of carbon/carbon preforms; and preparation of the carbon/carbon-copper composite material. The preparation processes comprise the following steps: firstly, cross-linking fibers in a pre-oxidized fiber felt of polyacrylonitrile by using needle-punching; secondly, performing carbonization on the needle-punched pre-oxidized fiber felt to form a carbon fiber needle-punched felt; thirdly, depositing pyrolytic carbon on the surfaces of the carbon fibers by using a chemical vapor infiltration (CVI) process, or densifying the carbon fibers by using a process combining the CVI process and resin impregnation, wherein the carbon fibers are adhered together through the pyrolytic carbon or the pyrolytic carbon and resin carbon to form a porous carbon/carbon composite material preform; and fourthly, performing high-temperature treatment on the porous carbon/carbon composite material preform, and impregnating the solution of copper into the carbon/carbon composite material preform by using a gas pressure infiltration method to obtain the carbon/carbon-copper composite material finally.
Owner:SHANGHAI UNIV

Preparation method of polyamide fiber with uvioresistant function

The invention relates to a preparation method of polyamide fiber with a uvioresistant function. The method comprises the following process steps: (1) grinding and mixing titanium dioxide, silicon dioxide and zinc oxide to obtain a mixture, and modifying the mixture by adopting a titanate coupling reagent so as to obtain a modified uvioresistant screening agent; (2) mixing the modified uvioresistant screening agent and polyamide slices, and performing melt extrusion pelleting in a twin-screw extruder so as to obtain uvioresistant master batches; (3) blending the uvioresistant master batches and the polyamide slices to obtain a mixture I, performing heating melting on the mixture I in the twin-screw extruder, and forming long polyamide yarns in an extruding manner from a yarn spraying port of a spinning manifold; (4) quenching and bundling the long polyamide yarns, so as to obtain yarn bundles, and performing primary tensioning, annealing and secondary tensioning on the yarn bundles so as to obtain the polyamide fiber. The polyamide fiber obtained by adopting the method has the good uvioresistant performance, and has the high wearing resisting performance.
Owner:WUXI TAIBO GARMENT

Technique for producing ultra high-strength terylene industry filament yarn

The present invention discloses a production process for an ultra high tenacity polyester industrial filament. The production process adopts a one-step method of spinning and stretching, and the method comprises the solid state tackifying, the melt spinning, the high temperature stretching, the heat setting, and the winding forming. The present invention adopts the innovative five-pair hot roll stretching heat setting process, compared with the traditional four-pair hot roll stretching heat setting, the the present invention adopts two-stage heat stretching, the processing method of the two-stage heat setting effectively reduces the stretching speed of fiber, and prolongs the heat setting time of the fiber, so that the fiber has an even stable orientation structure while the physical performance of products is ensured, the spinning condition is optimized. The ultra high tenacity polyester industrial filament prepared by utilizing the method of the present invention has the advantages that the intensity is high, the stretching and the dry heat shrinkage are reasonable, the heat resistant performance is good, and the impact resistant performance and the fatigue resistant performance are good.
Owner:JIANGSU SHENGHONG CHEM FIBRE CO LTD

Ceramic impregnated superabrasives

A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the poes are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.
Owner:RADTKE ROBERT P +1

Carbon fiber reinforced toughened epoxy resin composite material and preparation method thereof

InactiveCN104277418AImprove toughnessReduce hot melt dissolution processSynthetic resin layered productsLaminationThermoplasticEpoxy
The invention belongs to the technical field of high polymer composite materials and relates to a carbon fiber reinforced toughened epoxy resin composite material and its preparation method. The high polymer material is prepared from the following components, by weight, 100 parts of epoxy resin, 8-120 parts of a curing agent, 0.5-1.5 parts of a promoter, 160-500 parts of carbon fiber and 5-55 parts of thermoplastic. According to the invention, engineering thermoplastic is selected as a flexibilizer, and an appropriate solvent is selected; the engineering thermoplastic is made into a solution, and the solution is uniformly mixed with epoxy resin, the curing agent and the promoter; the solvent is removed; the resin system with the solvent removed is made into a resin film; by a routine resin film melt impregnation method, the resin film and carbon fiber undergo hot melting to be combined so as to prepare a carbon fiber reinforced epoxy resin prepreg; and furthermore, the highly-toughened carbon fiber reinforced toughened epoxy resin composite material is prepared.
Owner:SHANGHAI GENIUS ADVANCED MATERIAL (GRP) CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products