Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

10622 results about "Diamond" patented technology

Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. At room temperature and pressure, another solid form of carbon known as graphite is the chemically stable form, but diamond almost never converts to it. Diamond has the highest hardness and thermal conductivity of any natural material, properties that are utilized in major industrial applications such as cutting and polishing tools. They are also the reason that diamond anvil cells can subject materials to pressures found deep in the Earth.

Wire saw

A device for cutting a length of pipe includes a clamp portion for clamping around a length of pipe and a bow moveable with respect to the clamp portion that retains a loop of diamond embedded wire. The device further includes a feed for driving the bow with respect to the clamp portion and a detector for detecting bending of the wire and a control responsive to the detector for controlling feed rates. The device is made of modular parts and has synchronizing arms for clamping around a length of pipe. In one embodiment, the wheels are retained in enclosures with slots through which the cutting wire passes.
Owner:ILLINOIS TOOL WORKS INC

Methods and devices to design and fabricate surfaces on contact lenses and on corneal tissue that correct the eye's optical aberrations

Methods and devices are described that are needed to design and fabricate modified surfaces on contact lenses or on corneal tissue that correct the eye's optical aberrations beyond defocus and astigmatism. The invention provides the means for: 1) measuring the eye's optical aberrations either with or without a contact lens in place on the cornea, 2) performing a mathematical analysis on the eye's optical aberrations in order to design a modified surface shape for the original contact lens or cornea that will correct the optical aberrations, 3) fabricating the aberration-correcting surface on a contact lens by diamond point turning, three dimensional contour cutting, laser ablation, thermal molding, photolithography, thin film deposition, or surface chemistry alteration, and 4) fabricating the aberration-correcting surface on a cornea by laser ablation.
Owner:BROOKFIELD OPTICAL SYST

Lattice touch-sensing system

InactiveUS6970160B2Improved multiple-touch recognitionImproved rejection characteristicElectronic switchingCathode-ray tube indicatorsElectricityTouch Senses
This invention is directed to a lattice touch-sensing system for detecting a position of a touch on a touch-sensitive surface. The lattice touch-sensing system may include two capacitive sensing layers, separated by an insulating material, where each layer consists of substantially parallel conducting elements, and the conducting elements of the two sensing layers are substantially orthogonal to each other. Each element may comprise a series of diamond shaped patches that are connected together with narrow conductive rectangular strips. Each conducting element of a given sensing layer is electrically connected at one or both ends to a lead line of a corresponding set of lead lines. A control circuit may also be included to provide an excitation signal to both sets of conducting elements through the corresponding sets of lead lines, to receive sensing signals generated by sensor elements when a touch on the surface occurs, and to determine a position of the touch based on the position of the affected bars in each layer.
Owner:3M INNOVATIVE PROPERTIES CO

Abrasive bead coated sheet and island articles

Flexible abrasive sheet articles having precision thickness flat-topped raised island structures that are coated with a monolayer of equal sized abrasive agglomerate are described. Methods of producing high quality equal-sized spherical shaped composite abrasive agglomerate beads containing small diamond abrasive particles are described. Beads are produced by level-filling fine mesh screens or perforated sheets with a water based metal oxide slurry containing abrasive particles and then using a fluid jet to eject the abrasive slurry lumps from the individual screen cells into a dehydrating environment. Surface tension forces form the ejected liquid lumps into spheres that are solidified and then heated in a furnace to form ceramic beads. These porous ceramic abrasive beads can be bonded directly onto the flat planar surface of a flexible backing material or they can be bonded onto raised island surfaces to form rectangular or disk abrasive sheet articles. Abrasive articles having equal sized abrasive beads are particularly suited for lapping and raised island articles are suited for high speed lapping. Non-abrasive equal-sized beads can also be formed using this simple bead manufacturing process, which requires only a very low capital investment.
Owner:DUESCHER WAYNE O

Heat energy recapture and recycle and its new applications

What has been created is a plurality and a variety of processes and a variety of devices correspondingly supportive to each process, wherein, a new partnership between; (1) a heat absorbing radiator compressed air pipes / tubes and (2) a gas turbine engine or a reciprocating piston engine,—is used to recapture and reconvert the, otherwise wasted, heat energies expelled by engines, by factories, by smelting plants, by distillation plants, by chillers / coolers / freezers, by cooking ovens, by lamps / stoves, by trash burners, and the heat energies created by the solar heat on the desert / ocean water,—into electric power and finally into hydrogen-deuterium fuel,—by having the engine's tailpipes submerged in cold compressed air inside the heat absorbing radiator pipes in reverse air flow, to further drive and re-drive the same engine; wherein, in order to capture fusion heat energy the hydrogen bomb is detonated in the deep ocean to catch the flames by the water and the hot water is used to energize the compressed air inside the heat absorbing radiator pipes; wherein, in order to produce fusion energy, an abundant electric arc is passed across liquid deuterium or across gaseous deuterium by the electro-plasma torch and sparkplug in the internal combustion engine, and by detonating a dynamite inside a liquid deuterium; wherein diamond is produced by placing carbon inside the hydrogen bomb; and wherein, deuterium fusion flame is used first in smelting glass to large sizes before running an engine.
Owner:CHRISTIAN SCHOOL OF TECH CHARITABLE FOUND TRUST

Thermally stable diamond bonded materials and compacts

Thermally stable diamond bonded materials and compacts include a diamond body having a thermally stable region and a PCD region, and a substrate integrally joined to the body. The thermally stable region has a microstructure comprising a plurality of diamond grains bonded together by a reaction with a reactant material. The PCD region extends from the thermally stable region and has a microstructure of bonded together diamond grains and a metal solvent catalyst disposed interstitially between the bonded diamond grains. The compact is formed by subjecting the diamond grains, reactant material, and metal solvent catalyst to a first temperature and pressure condition to form the thermally stable region, and then to a second higher temperature condition to both form the PCD region and bond the body to a desired substrate.
Owner:SMITH INT INC

Moisture barrier coatings

A barrier assembly having a flexible or rigid substrate overcoated with an all polymer multilayer stack. A multilayer on the substrate includes alternating diamond-like glass or carbon layers with polymer layers. Another multilayer includes alternating polymer layers using different types of polymers. The barrier layers can be used to mount, cover, encapsulate or form composite assemblies for protection of moisture or oxygen sensitive articles
Owner:3M INNOVATIVE PROPERTIES CO

Chip having thermal vias and spreaders of CVD diamond

An integrated circuit chip having a heat spreader comprising CVD diamond extending along the chip support body and thermal vias extending through the support body in regions free of active devices or functional elements. The thermal vias may thermally conductive and electrically conductive or may be thermally conductive and electrically resistive. The integrated circuit chips may be 3D integrated circuit chips.
Owner:SEAGATE TECH LLC

Clip with enhanced gripping arrangement

InactiveUS20050273122A1Improved gripping surfaceIncrease engagementWound clampsEngineeringDiamond
A surgical clip includes a connecting member having a two ends and a pair of legs. Each leg extends from one end of the connecting member. A generally diamond-shaped pattern is formed on a portion of the inner surface of at least one of the connecting member and the pair of legs. The generally diamond-shaped pattern is formed as the result of generally perpendicular diagonal grooves.
Owner:MICROLINE PENTAX

Prosthetic joint having at least one superhard articulation surface

Prosthetic joints, components for prosthetic joints, superhard bearing and articulation surfaces, diamond bearing and articulation surfaces, substrate surface topographical features, materials for making joints, bearing and articulation surfaces, and methods for manufacturing and finishing the same, and related information are disclosed, including a prosthetic joint having at least one superhard articulation surface.
Owner:DIAMICRON

Large area optical quality synthetic polycrystalline diaond window

A polycrystalline chemical vapour deposited (CVD) diamond wafer comprising: a largest linear dimension equal to or greater than 70 mm; a thickness equal to or greater than 1.3 mm; and one or both of the following characteristics measured at room temperature (nominally 298 K) over at least a central area of the polycrystalline CVD diamond wafer, said central area being circular, centred on a central point of the polycrystalline CVD diamond wafer, and having a diameter of at least 70% of the largest linear dimension of the polycrystalline CVD diamond wafer: an absorption coefficient ≦0.2 cm−1 at 10.6 μm; and a dielectric loss coefficient at 145 GHz, of tan δ≦2×10−4.
Owner:ELEMENT SIX TECH LTD

Polycrystalline composites reinforced with elongated nanostructures

A sintered polycrystalline composite for cutting tools that includes a plurality of diamond or cubic boron nitride particles; a plurality of nanotube materials; and a refractory or binder material is disclosed. Methods of forming such polycrystalline composites that include integrating or mixing a plurality of nanotube materials with diamond or cubic boron nitride particle and / or refractory or binder particles are also disclosed.
Owner:SMITH INT INC

Constriction device including tear resistant structures

A constriction device that constricts body tissue and is formed of relatively thin elastic material includes a tear resistance structure to preclude an inadvertent tear in the device from propagating through the device. The tear resistance structure includes a plurality of intersecting ribs formed in the elastic material. The ribs circumscribe the device and define rectangular, square, diamond, wavy, or knurled patterns.
Owner:GYRUS ACMI INC (D B A OLYMPUS SURGICAL TECH AMERICA)

Thermally stable diamond brazing

A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.
Owner:RADTKE ROBERT P

Gyroscopes based on nitrogen-vacancy centers in diamond

A solid-state gyroscope apparatus based on ensembles of negatively charged nitrogen-vacancy (NV−) centers in diamond and methods of detection are provided. In one method, rotation of the NV− symmetry axis will induce Berry phase shifts in the NV− electronic ground-state coherences proportional to the solid angle subtended by the symmetry axis. A second method uses a modified Ramsey scheme where Berry phase shifts in the 14N hyperfine sublevels are employed.
Owner:RGT UNIV OF CALIFORNIA

Electrophoretic diamond coating and compositions for effecting same

InactiveUS6258237B1Effective engineering evaluation of material strengthImprove adhesionElectrolysis componentsVolume/mass flow measurementSubstrate surfaceMaterials science
A method of depositing diamond particles on a surface of a substrate is provided. The method is effected by (a) charging the diamond particles by a positive charge to obtain positively charged diamond particles; and (b) electrophoretically depositing the positively charged diamond particles on the surface of the substrate, for obtaining a green diamond particles coat on the surface of the substrate.
Owner:ISCAR LTD

Method for preparing graphene membrane

The invention discloses a method for preparing a graphene membrane. Carbon atoms are released from a solid carbon source by a method such as heat treatment, heat evaporation, sputtering, electron beam deposition, laser deposition or plasma deposition to form the graphene membrane on a catalytic layer or a substrate, wherein the solid carbon source is graphite, amorphous carbon, diamond, fullerene or carbon nano tubes. In the method for preparing the graphene membrane, the solid carbon source is used, the method is simple; and the prepared graphene membrane is easy to control in terms of thickness, structure and size, has excellent photoelectric characteristics and is suitable for preparing high-performance photoelectronic devices on a large scale.
Owner:ZHEJIANG UNIV

Hard graphite-like material bonded by diamond-like framework

The present invention provides a novel class of hard nano-structured materials comprising sp2 bonded graphite-like layers bonded together by sp3 three-dimensional diamond-like frameworks, wherein the whole carbon structure is stabilized with at least two alloying elements: the first alloying element selected from the group consisting of O, H, N, and a combination thereof; and the second alloying element selected from the group consisting of Si, B, Zr, Ti, V, Cr, Be, Hf, Al, Nb, Ta, Mo, W, Mn, Re, Fe, Co, Ni, Mn, Re, Fe, Co, Ni and a combination thereof. Also disclosed, are methods of manufacture of the novel class of materials.
Owner:NANODYNAMICS INC

7FAstage 1 abradable coatings and method for making same

A method of applying a profiled abradable coating onto a substrate in which an abradable ceramic coating composition is applied to a metal substrate using one or more coating application techniques to produce a defined ceramic pattern without requiring a separate web or grid to be brazed onto the substrate. The invention is particularly designed to withstand the higher operating temperatures encountered with the stage 1 section of 7FA+e gas turbines to allow for increased coating life without significant deterioration in structural or functional integrity. Typically, the grid pattern coating begins approximately 0.431″ after the leading edge of the shroud, and ends approximately 1.60″ before the trailing edge of the shroud. In the case of diamond-shaped patterns, the grid pattern will be about 0.28″ long and 0.28″ wide, with an overall thickness of about 0.46.″ The coatings thus provide the required levels of abradability and leakage performance and may be applied as a chevron or diamond pattern with the shape oriented such that the diagonals run perpendicular and parallel to the sides of the shroud.
Owner:GENERAL ELECTRIC CO

Single-use edging wheel for finishing glass

A single-use grinding tool includes a wheel portion having a profiled recess (e.g., such as a U, V, or bowl shape) extending circumferentially along the wheel portion's periphery. A multi-layered bonded abrasive (e.g., 3-dimensional matrix of abrasive grains and bond material, or multiple layers of abrasive tape) is conformably coated or otherwise applied in a uniform thickness along the profiled recess. The bonded abrasive in one particular case includes a metal bond with diamonds. However, organic, resinous, vitrified, and hybrid bonds, as well as other abrasive grit types, can be used. The wheel portion is supported by an arbor portion which may be removably coupled to the wheel portion, or formed integrally with the wheel portion. The tool is useful, for example, in edge grinding a workpiece, such as sheet glass. Methods of tool use and tool manufacture are disclosed as well.
Owner:SAINT GOBAIN ABRASIFS INC +1

Increased thermal conductivity monolithic zeolite structures

A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W / m·K to more than 1,000 W / m·K. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.
Owner:UT BATTELLE LLC

Polycrystalline compacts including in-situ nucleated grains, earth-boring tools including such compacts, and methods of forming such compacts and tools

Polycrystalline compacts include hard polycrystalline materials comprising in situ nucleated smaller grains of hard material interspersed and inter-bonded with larger grains of hard material. The average size of the larger grains may be at least about 250 times greater than the average size of the in situ nucleated smaller grains. Methods of forming polycrystalline compacts include nucleating and catalyzing the formation of smaller grains of hard material in the presence of larger grains of hard material, and catalyzing the formation of inter-granular bonds between the grains of hard material. For example, nucleation particles may be mixed with larger diamond grains, a carbon source, and a catalyst. The mixture may be subjected to high temperature and high pressure to form in smaller diamond grains using the nucleation particles, the carbon source, and the catalyst, and to catalyze formation of diamond-to-diamond bonds between the smaller and larger diamond grains.
Owner:BAKER HUGHES INC

Diamond-like nanocomposite compositions

The invention relates to an improved diamond-like nanocomposite composition comprising networks of a-C:H and a-Si:O wherein the H-concentration is between 40% and 80% of the C-concentration and having a coefficient of friction against steel which is smaller than 0.1 in air with a relative humidity up to 90%, or in water. The invention relates also to a process for depositing the composition on a substrate in a vacuum chamber. The composition comprises preferably 30 to 70 at % of C, 20 to 40 at % of H, 5 to 15 at % of Si and 5 to 15 at % of O and can be doped with transition metals.
Owner:SULZER METAPLAS

Oily diamond grinding liquid and preparation method thereof

The invention discloses an oily diamond grinding liquid and a preparation method thereof, and belongs to the technical field of surface superfine grinding. The grinding liquid comprises the following components by weight percent: 0.001%-10% of diamond micro powder, 0.001%-20% of surface active agent, 0-20% of dispersant, 0-10% of pH value regulator, 0-10% of wetting agent and oil in balancing amount. The oily diamond grinding liquid is mainly applied to surface grinding and polishing of silicon carbide wafers, LED sapphire substrate slices, ceramic, optical fiber, dies, semi-conductor compound wafers and the like. By the use of the oily diamond grinding liquid provided by the invention, the polishing efficiency can be greatly improved; the dispersing performance is good; a uniform and stable state can be kept for a long time; the degree of finish of products polished with the oily diamond grinding liquid is high; the polishing effect is good; no ingredient harmful to human body is contained; the cleaning is easy; and the environmental protection is facilitated.
Owner:TSINGHUA UNIV +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products