Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

6338 results about "Thermal dilatation" patented technology

Vacuum IG pillar with lubricating and/or reflective coating

A vacuum insulating glass (IG) unit is provided with an array of spacers / pillars between opposing glass sheets. At least some of the spacers / pillars are coated on at least one surface thereof with a dry lubricant and / or reflective material such as silver. This coating permits the glass sheet(s) to move relative to one another during thermal expansion while minimizing the degree to which the spacers / pillars scratch or crack the glass during such relative movement. A method of making an exemplary spacer / pillar includes transforming by chemical reaction silver ions on a core into a metallic silver coating thereby resulting in a coated spacer / pillar.
Owner:GUARDIAN GLASS LLC

Method for making an ordered magnetic alloy

A method for making an ordered magnetic alloy includes (a) providing a thermally conductive base having opposite first and second surfaces; (b) forming a thermal barrier layer on the first surface of the thermally conductive base; (c) forming a disordered magnetic alloy layer on the thermal barrier layer, the disordered magnetic alloy layer being made from a disordered alloy which contains a first metal selected from Fe, Co, and Ni, and a second metal selected from Pt and Pd; and (d) after step (c), applying a transient heat to the thermally conductive base to cause rapid thermal expansion of the thermally conductive base, which, in turn, causes generation of an in-plane tensile stress in the disordered magnetic alloy layer.
Owner:NATIONAL TSING HUA UNIVERSITY

Mullite-aluminum titanate body and method for making same

This invention relates to a mullite-aluminum titanate body having a low coefficient of thermal expansion of less than 15×10−7 C−1, a high porosity of at least 38% by volume, a median pore diameter of at least 8 microns, and a narrow pore size distribution as characterized by the relation (d50-d10) / d50 being less than 0.50 corresponding to a high degree of interconnected porosity. The inventive ceramic body also contains at least 0.10% by weight metal oxide, the metal being either yttrium, calcium, bismuth, a lanthanide metal or combinations of thereof. The inventive ceramic body is particularly useful as a wall-flow filter for diesel exhaust. A method of fabrication is provided where the sintering temperature is between 1375°-1550° C.
Owner:CORNING INC

Coating inorganic fiber toughened MAX phase ceramic composite material, preparation method and uses thereof

ActiveCN103910532AAppropriate bonding interface strengthFree control of interface strengthNuclear energy generationContainmentAviationFiber
The present invention provides a coating inorganic fiber toughened MAX phase ceramic composite material and a preparation method thereof. The composite material adopts a MAX phase ceramic material as a matrix and adopts coating inorganic fibers as a toughening phase, wherein the coating inorganic fiber content is 0.5-90% (by volume), and the coating inorganic fibers are completely dispersed in the matrix and are inorganic fibers with the surface coated with the coating. Compared with the composite material in the prior art, the composite material of the present invention has the following characteristics that: the interface reaction between the inorganic fibers and the MAX phase ceramic can be effectively inhibited, the thermal expansion coefficient and elasticity modulus matching degree between the inorganic fibers and the MAX phase ceramic can be effective regulated, the effective improvement of the fracture toughness and the high temperature resistance of the MAX phase ceramic composite material can be achieved, the problems of high brittleness and insufficient use reliability of the MAX phase ceramic can be fundamentally solved, and the coating inorganic fiber toughened MAX phase ceramic composite material has potential application prospects in the high technology fields of civil use, aviation, aerospace, nuclear industry and the like, and is especially for the fission and fusion reactor nuclear power plant inner wall structure material.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Semiconductor flip-chip package and method for the fabrication thereof

A flip-chip device and process for fabricating the device employs a multilayer encapsulant that includes a first portion encapsulant having a coefficient of thermal expansion of at most 30 ppm / .degree. C. and an elastic modulus of 2-20 GPa and a second portion comprising a polymer flux having a coefficient of thermal expansion that may exceed 30 ppm / .degree. C.
Owner:INVENSAS CORP

Flow-through sampling cell and use thereof

InactiveUS6192768B1Complicate and expensiveDestroy characteristicComponent separationTransportation and packagingElectricityEngineering
A sampling cell of flow-through type and use of such a sampling cell. The sampling cell is preferably manufactured by etching of silicon wafers. It is especially useful for continuous picovolume sampling in an analytical flow. The pressure pulse generator (9) generates pulses directly into a flow channel (3). The flow channel (3) is preferably formed by a first basin (4) in a first structure (1) and a second basin (5) in a second structure (2). In a first embodiment the pressure pulse generator (9) comprises at least one piezo-ceramic disc and / or devices acting by way of magnetostrictive, electrostatical or electromechanical forces and / or devices acting by way of thermal expansion. Method of directing samples from a flow-through sampling cell by establishing a difference in electrical potential between the liquid in the flow-through sampling cell and the object to which the samples are to be directed. Use of a flow-through sampling cell for coating of surfaces, especially for achieving biospecific surfaces, for extracting samples from a continuous liquid flow, for extracting a precise sample amount by collecting a defined number of samples or for injecting samples for electrophoresis, especially capillary electrophoresis, and for electrochromatography.
Owner:GYROS

Gas turbine engine having a multi-variable closed loop controller for regulating tip clearance

A gas turbine engine has, in flow series, a compressor section, a combustor, and a turbine section. The gas turbine engine further has a system (i) for cooling the turbine section and (ii) for providing tip clearance control between turbine blades of the turbine section and a plurality of circumferentially distributed segments which form an annular shroud surrounding the outer tips of the turbine blades. The system includes a turbine section cooling sub-system which diverts a first cooling air flow received from the compressor section to a heat exchanger and then to the turbine section to cool components thereof. The first cooling air flow by-passes the combustor and is cooled in the heat exchanger. The turbine section cooling subsystem has a first valve arrangement which regulates the first cooling air flow. The system further includes a tip clearance control sub-system which supplies a second cooling air flow to an engine case to which the segments are mounted. The second cooling air flow regulates thermal expansion of the case and thereby controls the clearance between the segments and the outer tips. The tip clearance control sub-system has a second valve arrangement which regulates the second cooling air flow. The system further includes a closed-loop controller which issues first and second demand signals to respectively the first and the second valve arrangements. Each of the first and second demand signals are determined on the basis of: (i) a value of the first demand signal at a previous time step, and a measurement or estimate of turbine section component temperature, and (ii) a value of the second demand signal at a previous time step, and a measurement or estimate of tip clearance.
Owner:ROLLS ROYCE PLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products