Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

169results about "Heat treatment application" patented technology

Iron nitride thin film and methods for production thereof

The present invention provides a method for the preparation of an iron nitride thin film by which an iron nitride thin film having a high growth rate can be epitaxially grown under atmospheric pressure without using any expensive vacuum system or raw materials, and an iron nitride thin film prepared by this method. This method for the preparation of an iron nitride thin film comprises the steps of vaporizing an iron halide used as a raw material 51 for the preparation of a thin film and reacting the resulting iron halide gas with a nitrogen source gas 7 containing nitrogen to produce an iron nitride gas; and preparing an epitaxial film of iron nitride 63 on a substrate 61 by allowing the iron halide gas to become adsorbed on the substrate 61 under atmospheric pressure and grow epitaxially thereon.
Owner:SUZUKI MOTOR CORP

Method for preparing magnetic thin film

The invention provides a method for preparing a magnetic thin film. The method comprises the steps of preparing a magnetic filler, preparing a magnetic film forming matter matrix, forming a film and applying a magnetic field. In the method, the technology that magnetic nano or micron material fillers in such film forming matters as resins, rubbers, plastics, coatings and other high polymers are directionally and orderly arranged under the action of the external magnetic field is adopted, and the bearing media of the magnetic thin film or magnetic nano thin film are expanded under the premise of maintaining the anisotropy characteristic of the magnetic nanocrystals, thus expanding the application field of the bearing media. The method has the following advantages: the bearing media of the magnetic nanocrystals can be resins, rubbers, plastics, coatings, other high polymers and other flexible media rather than to be only limited to hard substrates; besides the precipitation method and the self-assembly method, the film forming methods also include a drawing method, a blowing method, a calendering method, a diffusion method and the like; and the stepwise synthesis process is adopted, thus improving the controllability of the synthesized product and being beneficial to industrial production.
Owner:SUNDIA MEDITECH COMPANY LTD

Method for fabricating L10 phase alloy film

A method for fabricating an L10 alloy film is provided. The method includes steps of (a) providing a substrate; (b) heating the substrate as a preheated substrate at a first temperature ranged from 100° C. to 600° C. for a time period ranged from 5 minutes to 120 minutes, and then cooling the substrate to room temperature in the sputtering chamber; (c) depositing an alloy film on the preheated substrate; and (d) annealing the alloy film at a second temperature ranged from 200° C. to 500° C. to form the alloy film.
Owner:CHANG CHING RAY

Method for increasing coercive force of magnets

The present invention provides a method for improving coercive force of magnets, this method comprises steps as follows: S2) coating step: coating a coating material on the surface of a magnet and drying it; and S3) infiltrating step: heat treating the magnet obtained from the coating step S2). The coating material comprises (1) metal calcium particles and (2) particles of a material containing a rare earth element; the rare earth element is at least one selected from Praseodymium, Neodymium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium and Lutetium. The method of the present invention can significantly increase coercive force of a permanent magnet material, while remanence and magnetic energy product hardly decrease. In addition, the method of the present invention can significantly decrease the amount of a rare earth element, and accordingly, decrease the production cost.
Owner:BAOTOU TIANHE MAGNETICS TECH CO LTD

Praseodymium- iron- co-doped strontium titanate multiferroic film and preparation process thereof

A praseodymium- iron- co-doped strontium titanate multiferroic film and a preparation process thereof are disclosed. The strontium titanate film comprises a material the formula of which is Sr[1-x]PrxTi[1-y]FeyO3, wherein 0.025<=x<=0.075, and 0.05<=y<=0.3. The preparation process includes: weighing strontium acetate, praseodymium oxide, butyl titanate and ferric nitrate according to the molar ratio in the formula, dissolving the strontium acetate and the butyl titanate with acetic acid and ethylene glycol monomethyl ether in two steps, dissolving the ferric nitrate with the ethylene glycol monomethyl ether, reacting concentrated nitric acid with the praseodymium oxide, mixing to form a solution C having a concentration of 0.2 mol / L, whirl-coating the solution C in a whirl coating machine, drying and performing thermal decomposition until the film thickness reaches 300 nm, and annealing to obtain the Sr[1-x]PrxTi[1-y]FeyO3 film. Ferroelectricity and magnetism of strontium titanate, which are induced by praseodymium- iron- co-doping, occur around the room temperature. Preparation of a novel single-phase multiferroic material is achieved.
Owner:HENAN UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products