Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1459 results about "Erbium" patented technology

Erbium is a chemical element with the symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare earth element, originally found in the gadolinite mine in Ytterby in Sweden, from which it got its name.

High power optical apparatus employing large-mode-area, multimode, gain-producing optical fibers

Optical apparatus includes a multimode, gain-producing fiber for providing gain to signal light propagating in the core of the fiber, and a pump source for providing pump light that is absorbed in the core, characterized in that (i) the pump source illustratively comprises a low brightness array of laser diodes and a converter for increasing the brightness of the pump light, (ii) the pump light is coupled directly into the core, and (iii) the area of the core exceeds approximately 350 μm2. In one embodiment, the signal light propagates in a single mode, and the pump light co-propagates in at least the same, single mode, both in a standard input fiber before entering the gain-producing fiber, and a mode expander is disposed between the input fiber and the gain-producing fiber. In another embodiment, multiple pumps are coupled into the core of the gain-producing fiber. The pumps may generate light of the same wavelength or of different wavelengths. In accordance with a particular embodiment of our invention, we have demonstrated amplification of nanosecond optical pulses at 1545 nm in a single clad Er-doped fiber having a core area of 875 μm2; the core was pumped by a high brightness Raman laser at 1480 nm; and the pulses had a record peak power of several hundred kW.
Owner:OFS FITEL LLC

High performance lithium ion battery anode material lithium manganate and preparation method thereof

The invention provides a high performance lithium ion battery anode material lithium manganate and a preparation method of the material. The lithium manganate is a doped lithium manganate LiMn2-yXy04 which is doped with one kind or a plurality of other metal elements X, wherein X element is at least one kind selected form the group of aluminium, lithium, fluorine, silver, copper, chromium, zinc, titanium, bismuth, germanium, gallium, zirconium, stannum, silicon, cobalt, nickel, vanadium, magnesium, calcium, strontium, barium and rare earth elements lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium, and y is larger than 0 but less than or equal to 0.11. The lithium ion battery anode material lithium manganate provided in the invention has extraordinary charge and discharge cycle performance both in the environments of normal temperature and high temperature. According to the invention, the preparation method of the material is a solid phase method, the operation is simple and controllable and the cost is low so that it is easy to realize large-scale productions.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI

Mode field diameter conversion fiber, method for locally changing a refractive index of optical waveguides and method for fabricating optical waveguide preforms

PCT No. PCT / RU97 / 00278 Sec. 371 Date Jul. 9, 1998 Sec. 102(e) Date Jul. 9, 1998 PCT Filed Sep. 3, 1997 PCT Pub. No. WO98 / 28643 PCT Pub. Date Jul. 2, 1998The invention relates to fiber optics and can be employed in fiber radiation collimators, optical waveguide couplers, spectral filters, optical isolators, long-period gratings, dispersion compensators, cascade mode field diameter conversion fibers on simulated Raman effect, physical value sensors, radiation suppression units for predetermined wavelengths, and for smoothing the gain spectrum in erbium fiber amplifiers. The invention facilitates fabrication of optical waveguides and apparatuses based on them. To produce preforms for optical waveguides (1) by a plasma chemical vapor deposition method, molecular gaseous agents, fed to a substrate tube (24), are mixed so that less than five atoms of oxygen fall on every atom of silicon and more than one atom of nitrogen falls on every 1000 atoms of oxygen. The refractive index is locally changed by heating a length of an optical waveguide (1). This causes a local thermal diffusion of elements contained in a core (3) into a cladding (2), or vice versa. The length of the optical waveguide (1) is heated by current of an electric arc (10) or by radiation (16) of an infrared laser (15). The core (3) is doped with nitrogen at concentration from 0.01 at. % to 5 at. %. In the mode field diameter conversion fiber, a diameter of the core (3) changes along the length of the optical waveguide (1), increasing towards its end (4).
Owner:VOLOKONNO OPTICHESKAYA TEKHNIKA KAPITAL +2

Rare earth aluminum alloy, and method and device for preparing same

The invention discloses a rare earth aluminum alloy, and a method and a device for preparing the same. The alloy contains at least one rare earth metal of lanthanum, cerium, praseodymium, neodymium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, lutetium, scandium and yttrium, the content of raw earth is 5 to 98 weight percent, and the balance is aluminum and inevitable impurities. The device for preparing the rare earth aluminum alloy is characterized in that: a) graphite serves as an electrolysis bath, a graphite plate is an anode, a tungsten bar is a cathode and a molybdenum crucible serves as a rare earth aluminum alloy receiver; b) the diameter of the tungsten bar is 30 to 55 mm; and c) the anode of the graphite consists of a plurality of graphite plates. The rare earth aluminum alloy, and the method and the device for preparing the same have the advantages that: the alloy has uniform components, little segregation and low impurity content; technology for preparing the rare earth aluminum alloy through fusion electrolysis can maximally replace a process for preparing single medium-heavy metal through metallothermic reduction, greatly reduce energy consumption and the emission of fluorine-containing tail gas and solid waste residue, improve current efficiency and metal yield and reduce the consumption of auxiliary materials and the energy consumption; and the rare earth aluminum alloys with different rare earth contents can be obtained by controlling different electrolytic temperatures and different cathode current densities.
Owner:GRIREM ADVANCED MATERIALS CO LTD

Compact, highly efficient and rugged UV source based on fiber laser

A tunable highly efficient and high power ultraviolet (UV) laser source with good spatial beam quality is disclosed. A plurality of laser lights are generated by ytterbium (Yb) doped fiber laser and erbium / ytterbium (Er / Yb) doped fiber laser. In order to achieve a desired UV wavelength, the Yb-doped and Er / Yb-doped fiber lasers are tuned to generate laser lights of certain wavelengths based on a desired UV light wavelength. The laser lights from the Er / Yb-doped fiber laser and the Yb-doped fiber laser are frequency-doubled. The frequency-doubled laser lights are non-linearly frequency-mixed to generate a UV light with the desired wavelength.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products