Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4582results about "Active medium material" patented technology

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of the ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used.
Owner:IMRA AMERICA

Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier

An apparatus generates femtosecond pulses from laser amplifiers by nonlinear frequency conversion. The implementation of nonlinear frequency-conversion allows the design of highly nonlinear amplifiers at a signal wavelength (SW), while still preserving a high-quality pulse at an approximately frequency-doubled wavelength (FDW). Nonlinear frequency-conversion also allows for limited wavelength tuning of the FDW. As an example, the output from a nonlinear fiber amplifier is frequency-converted. By controlling the polarization state in the nonlinear fiber amplifier and by operating in the soliton-supporting dispersion regime of the host glass, an efficient nonlinear pulse compression for the SW is obtained. The generated pulse width is optimized by utilizing soliton compression in the presence of the Raman-self-frequency shift in the nonlinear fiber amplifier at the SW. High-power pulses are obtained by employing fiber amplifiers with large core-diameters. The efficiency of the nonlinear fiber amplifier is optimized by using a double clad fiber (i.e., a fiber with a double-step refractive index profile) and by pumping light directly into the inner core of this fiber. Periodically poled LiNbO3 (PPLN) is used for efficient conversion of the SW to a FDW. The quality of the pulses at the FDW can further be improved by nonlinear frequency conversion of the compressed and Raman-shifted signal pulses at the SW. The use of Raman-shifting further increases the tuning range at the FDW. For applications in confocal microscopy, a special linear fiber amplifier is used.
Owner:IMRA AMERICA

Organic vertical-cavity surface-emitting laser

Organic vertical-cavity surface-emitting lasers ("OVCSELs"), in which a thin layer of organic material is disposed between highly reflective mirrors to thereby form a vertical cavity within a stacked arrangement. The lasers of the present invention each comprise a first mirror layer; a layer of active organic material over the first mirror layer; and a second mirror layer over the layer of first active organic material. The active organic material lases when pumped to thereby produce laser light. The present invention provides for optical semiconductor lasers with desired properties such as narrow bandwidth emission, the minimal use of active organic materials, and the facilitation of wavelength tuning and electrical pumping.
Owner:PRINCETON UNIV THE TRUSTEES OF

Beam homogenizer and laser irradiation apparatus

There is provided a beam homogenizer which can unify the energy distribution of a linear laser beam in a longitudinal direction. In the beam homogenizer including cylindrical lens groups for dividing a beam, and a cylindrical lens and a cylindrical lens group for condensing the divided beams, the phases, in the longitudinal direction, of linear beams passing through individual cylindrical lenses of the cylindrical lens group for condensing the divided beams are shifted, and then, the beams are synthesized, so that the intensity of interference fringes of the linear beam on a surface to be irradiated is made uniform.
Owner:SEMICON ENERGY LAB CO LTD

Laser light source device and laser irradiation apparatus using the same

A laser light source device includes a pump light source which emits transverse-multimode light; a plurality of resonator mirrors which define a resonator, at least part of the resonator mirrors outputting light to the outside, where the output light having plural wavelengths; a laser medium arranged in the resonator, the laser medium being pumped with the transverse-multimode light emitted from the pump light source; and a wavelength conversion element arranged in the resonator, the wavelength conversion element being irradiated with a transverse-multimode line beam of fundamental wave obtained by oscillation at the laser medium and outputting a line beam of converted wave.
Owner:SONY CORP

Nitride semiconductor laser chip and fabrication method thereof

In a nitride semiconductor laser chip so structured as to suppress development of a step on nitride semiconductor layers, the substrate has the (1-100) plane as the principal plane, the resonator facet is perpendicular to the principal plane, and, in the cleavage surface forming the resonator facet, at least by one side of a stripe-shaped waveguide, an etched-in portion is formed as an etched-in region open toward the surface of the nitride semiconductor layers.
Owner:SHARP KK

Laser-based system for memory link processing with picosecond lasers

A laser-based system for processing target material within a microscopic region without causing undesirable changes in electrical or physical characteristics of at least one material surrounding the target material, the system includes a seed laser, an optical amplifier, and a beam delivery system. The seed laser for generating a sequence of laser pulses having a first pre-determined wavelength. The optical amplifier for amplifying at least a portion of the sequence of pulses to obtain an amplified sequence of output pulses. The beam delivery system for delivering and focusing at least one pulse of the amplified sequence of pulses onto the target material. The at least one output pulse having a pulse duration in the range of about 10 picoseconds to less than 1 nanosecond. The pulse duration being within a thermal processing range. The at least one focused output pulse having sufficient power density at a location within the target material to reduce the reflectivity of the target material and efficiently couple the focused output into the target material to remove the target material.
Owner:GSI LUMONICS CORP

Laser irradiation method, laser irradiation apparatus, and semiconductor device

An object of the present invention is obtaining a semiconductor film with uniform characteristics by improving irradiation variations of the semiconductor film. The irradiation variations are generated due to scanning while irradiating with a linear laser beam of the pulse emission. At a laser crystallization step of irradiating a semiconductor film with a laser light, a continuous light emission excimer laser emission device is used as a laser light source. For example, in a method of fabricating an active matrix type liquid crystal display device, a continuous light emission excimer laser beam is irradiated to a semiconductor film, which is processed to be a linear shape, while scanning in a vertical direction to the linear direction. Therefore, more uniform crystallization can be performed because irradiation marks can be avoided by a conventional pulse laser.
Owner:SEMICON ENERGY LAB CO LTD

Optical spectroscopy apparatus and method for measurement of analyte concentrations or other such species in a specimen employing a semiconductor laser-pumped, small-cavity fiber laser

An optical spectroscopy apparatus determines the concentration of analyte in a specimen that utilizes a single radiation source which is hybrid laser comprising a semiconductor pump laser and small-cavity rare earth fiber laser where laser cavities of both lasers are butt coupled or otherwise optically coupled to form a plurality of laser cavities that produce a plurality of emission wavelengths, one which may be the pump laser emission wavelength at the output of the fiber laser thereby forming a multi-wavelength combined output where the wavelengths substantially match distinguishing spectral characteristic features along at least a portion of a characteristic optical spectrum of the analyte under examination. In lieu of complex data analysis of these wavelengths to determine values representing the concentration of the analyte in an examined specimen, the semiconductor pump laser or lasers are modulated as a plurality of tone frequencies, where at least a first of the modulation frequencies is below the maximum frequency response of the fiber laser so that the first modulation effectively modulates the pump emission wavelength and a first emission wavelength of the fiber laser in the hybrid laser combined output, and at least a second of modulation frequencies is above the maximum frequency response of the fiber laser so that the second modulation effectively modulates the pump emission wavelength but not the first emission wavelength of the fiber laser in the hybrid laser combined output. Further, one or more additional modulation frequencies may be applied to the pump laser which are intermediate of the first and second modulation frequencies where it is at least responsive to at least one further emission wavelength of the fiber laser and also provided in the hybrid laser combined output.
Owner:THORNTON ROBERT L

High power short pulse fiber laser

A pulsed laser comprises an oscillator and amplifier. An attenuator and / or pre-compressor may be disposed between the oscillator and amplifier to improve performance and possibly the quality of pulses output from the laser. Such pre-compression may be implemented with spectral filters and / or dispersive elements between the oscillator and amplifier. The pulsed laser may have a modular design comprising modular devices that may have Telcordia-graded quality and reliability. Fiber pigtails extending from the device modules can be spliced together to form laser system. In one embodiment, a laser system operating at approximately 1050 nm comprises an oscillator having a spectral bandwidth of approximately 19 nm. This oscillator signal can be manipulated to generate a pulse having a width below approximately 90 fs.
Owner:IMRA AMERICA

Modular fiber-based chirped pulse amplification system

A modular ultrafast pulse laser system is constructed of individually pre-tested components manufactured as modules. The individual modules include an oscillator, pre-amplifier and power amplifier stages, a non-linear amplifier, and a stretcher and compressor. The individual modules can typically be connected by means of simple fiber splices.
Owner:IMRA AMERICA

Ii-vi mqw vscel on a heat sink optically pumped by a GAN ld

Light sources are disclosed. A disclosed light source includes a III-V based pump light source (170) that includes nitrogen and emits light at a first wavelength. The light source further includes a vertical cavity surface emitting laser (VCSEL) that converts at least a portion of the first wavelength light (174) emitted by the pump light source (170) to at least a partially coherent light at a second wavelength (176). The VCSEL includes first and second mirrors (120, 160) that form an optical cavity for light at the second wavelength. The first mirror (120) is substantially reflective at the second wavelength and includes a first multilayer stack. The second mirror (160) is substantially transmissive at the first wavelength and partially reflective and partially transmissive and the second wavelength. The second mirror includes a second multilayer stack. The VCSEL further includes a semiconductor multilayer stack (130) that is disposed between the first and second mirrors and converts at least a portion of the first wavelength light to the second wavelength light. The semiconductor multilayer stack (130) includes a quantum well that includes a Cd(Mg)ZnSe alloy.
Owner:3M INNOVATIVE PROPERTIES CO

Upconversion luminescence materials and methods of making and using same

The present relates in general to upconversion luminescence ("UCL") materials and methods of making and using same and more particularly, but not meant to be limiting, to Mn2+ doped semiconductor nanoparticles for use as UCL materials. The present invention also relates in general to upconversion luminescence including two-photon absorption upconversion, and potential applications using UCL materials, including light emitting diodes, upconversion lasers, infrared detectors, chemical sensors, temperature sensors and biological labels, all of which incorporate a UCL material.
Owner:FLIR DETECTION

Three dimensional engineering of planar optical structures

Three dimensional optical structures are described that can have various integrations between optical devices within and between layers of the optical structure. Optical turning elements can provide optical pathways between layers of optical devices. Methods are described that provide for great versatility on contouring optical materials throughout the optical structure. Various new optical devices are enabled by the improved optical processing approaches.
Owner:NANOGRAM

Colloidal nanocrystals with high photoluminescence quantum yields and methods of preparing the same

The present invention provides new compositions containing colloidal nanocrystals with high photoluminescence quantum yields, new synthetic methods for the preparation of highly luminescent colloidal nanocrystals, as well as methods to control the photoluminescent properties of colloidal nanocrystals. The new synthetic methods disclosed herein allow photoemission brightness (quantum yield) to be correlated with certain adjustable nanocrystal growth parameters associated with a given synthetic scheme.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ARKANSAS

Display device using vertical cavity laser arrays

A display apparatus for producing colored pixelated light includes a backlight unit for providing a pump-beam light. The apparatus also includes a microcavity light-producing array responsive to pump-beam light and having pixels wherein each pixel including a transparent substrate, a bottom dielectric stack reflective to light over a predetermined range of wavelengths, an active region responsive to pump-beam light for producing display light, and a top dielectric stack spaced from the bottom dielectric stack and reflective to light over a predetermined range of wavelengths. The apparatus further includes a light shutter for permitting selected display light from the microcavity light-producing array to pass therethrough, a polarizing layer disposed between the microcavity light-producing array and the light shutter, and a beam expander disposed over the light shutter for increasing the angular cone of view of the display light.
Owner:EASTMAN KODAK CO

Laser irradiation apparatus and method of fabricating a semiconductor device

There is provided an optical system for reducing faint interference observed when laser annealing is performed to a semiconductor film. The faint interference conventionally observed can be reduced by irradiating the semiconductor film with a laser beam by the use of an optical system using a mirror of the present invention. The optical system for transforming the shape of the laser beam on an irradiation surface into a linear or rectangular shape is used. The optical system may include an optical system serving to convert the laser beam into a parallel light with respect to a traveling direction of the laser beam. When the laser beam having passed through the optical system is irradiated to the semiconductor film through the mirror of the present invention, the conventionally observed faint interference can be reduced. Besides, the optical system which has been difficult to adjust can be simplified.
Owner:SEMICON ENERGY LAB CO LTD

Long delay and high TIS pulse stretcher

A method and apparatus for laser light pulse stretching is disclosed which may comprise a beam splitter in the path of a laser output light pulse beam; selected to pass a first percent of the energy of a first input pulse of the laser output light pulse beam along a laser output light pulse beam output path as a first output pulse and to reflect a second percent of the energy of the laser output light pulse beam into a first delayed beam; an optical delay path receiving the first delayed beam and returning the first delayed beam to the beam splitter in an orientation such that a third percent of the first delayed beam is reflected into the output path as a second output pulse and a fourth percent is passed into the optical delay path as a second delayed beam; the optical delay path receiving the second delayed beam and returning the second delayed beam to the beam splitter in an orientation such that the third percent of the second delayed beam is reflected into the output path as a third output pulse and the fourth percent of the second delayed beam is passed into the optical delay path as a third delayed beam; the optical delay path receiving the third delayed beam and returning the third delayed beam to the beam splitter in an orientation such that the third percent of the third delayed beam is reflected into the output path as a fourth output pulse; the first input pulse being a first pulse in a plurality of pulses output from a prior pulse stretcher, each of a plurality of succeeding input pulses comprising the output of the prior pulse stretcher resulting from the stretching of a narrow band laser light output pulse, forming successive first, second, third and fourth output pulses, the combination of which forms a pulse stretcher having an output with TIS of at least 200 ns. The optical delay path may be formed of a plurality of at least eight reflecting mirrors and contained in an elongated enclosure having first and second end plates mounting a first group of at least four of the at least eight reflecting mirrors mounted on the first mounting surface symmetrically about a center axis of the optical delay path and a second group of at least four of the at least eight reflecting mirrors mounted on the second mounting surface symmetrically about the center axis. The mirrors may be staggered in a predefined pattern, e.g., a circular pattern. The delay path may lie in a plurality of planes. The apparatus may be part of a laser system, part of a beam delivery system or an interface between the two.
Owner:CYMER INC

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA

Amplifying Optical Fiber and Method of Manufacturing

Disclosed is an amplifying optical fiber having a central core and an optical cladding surrounding the central core. The central core is based on a silica matrix that includes nanoparticles, which are composed of a matrix material that includes doping ions of at least one rare earth element. The amplifying optical fiber can be employed, for example, in an optical amplifier and an optical laser.
Owner:DRAKA COMTEQ BV

Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied

An optical amplifying apparatus which includes an optical amplifier, an optical attenuator and a controller. The optical amplifier amplifies a light signal having a variable number of channels. The optical attenuator passes the amplified light signal and has a variable light transmissivity. Prior to varying the number of channels in the light signal, the controller varies the light transmissivity of the optical attenuator so that a power level of the amplified light signal is maintained at an approximately constant level that depends on the number of channels in the light signal prior to the varying the number of channels. While the number of channels in the light signal is being varied, the controller maintains the light transmissivity of the optical attenuator to be constant. Subsequent to varying the number of channels in the light signal, the controller varies the light transmissivity of the optical attenuator so that a power level of the amplified light signal is maintained at an approximately constant level that depends on the number of channels in the light signal subsequent to the varying the number of channels.
Owner:FUJITSU LTD

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA

Injection seeded F2 lithography laser

A tunable injection seeded very narrow band F2 lithography laser. The laser combines modular design features of prior art long life releasable lithography lasers with special F2 line narrowing and tuning techniques applied to a seed beam operated in a first gain medium which beam is used to stimulate narrow band lasing in a second gain medium to produce a very narrow band laser beam useful for integrated circuit lithography.
Owner:CYMER INC

Method and arrangement for the efficient generation of short-wavelength radiation based on a laser-generated plasma

InactiveUS20060215712A1Losses in the main pulse (e.g., due to transmission) are minimizedLaser using scattering effectsActive medium materialIon densityElectromagnetic radiation
The invention is directed to a method and an arrangement for the efficient generation of intensive short-wavelength radiation based on a plasma. The object of the invention is to find a novel possibility for the generation of intensive short-wavelength electromagnetic radiation, particularly EUV radiation, which permits the excitation of a radiation-emitting plasma with economical gas lasers (preferably CO2 lasers). This object is met, according to the invention, in that a first prepulse for reducing the target density is followed by at least a second prepulse which generates free electrons in the target by multiphoton ionization after a virtually complete recombination of free electrons generated by the first prepulse has taken place due to a long-lasting expansion of the target for reducing the target density, and the main pulse of a gas laser with a low critical electron density typical for its wavelength is directed to the target immediately after the second prepulse when the second prepulse in the expanded target, whose ion density corresponds to the critical electron density of the gas laser, has created enough free electrons so that an efficient avalanche ionization is triggered by the main pulse of the gas laser until reaching the ionization level for the desired radiation emission of the plasma.
Owner:XTREME TECH

Compact semiconductor-based chirped-pulse amplifier system and method

A compact signal source including: a semiconductor-based, pulsed optical energy source for providing a series of pulses at a given frequency; a selector being optical fiber coupled to the pulsed optical energy source and for down-selecting the pulses to a lower frequency; a stretcher being optical fiber coupled to the selector and for temporally stretching the selected pulses; at least one semiconductor-based optical amplifier being optical fiber coupled to the stretcher and for amplifying the selected pulses; a compressor being optical fiber coupled to the at least one semiconductor-based amplifier and for temporally compressing the amplified, stretched, selected pulses; and, a portable housing containing the pulsed optical energy source, stretcher, at least one semiconductor-based optical amplifier and compressor.
Owner:BRAUN ALAN MICHAEL +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products