Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2814results about How to "Reduce reflectivity" patented technology

Coated surgical staples and an illuminated staple cartridge for a surgical stapling instrument

A coated surgical fastener is provided for an easy visualization within tissue. The coated surgical fastener includes a core and a relatively non-reflective coating applied about the core. There is also disclosed an illuminated staple cartridge for use with a surgical stapling device having a light source. The illuminated staple cartridge includes a transparent insert and a relatively nontransparent U-shaped outer channel at least partially surrounding the transparent insert. Windows formed in sides of the U-shaped outer channel allow defined amounts of light to project from the sides of the illuminated staple cartridge.
Owner:COVIDIEN LP

Capacitive input device

A capacitive input device includes a translucent substrate; first translucent electrode lines, extending in a first direction; second translucent electrode lines, extending in a second direction intersecting with the first direction; interlayer insulating layers; and relay electrodes. The first translucent electrode lines intersect with the second translucent electrode lines at intersecting portions. Portions of one of each first translucent electrode line and each second translucent electrode line are connected to each other with the intersecting portions. Portions of the other are separated from each other with the intersecting portions. The translucent interlayer insulating layers overlie the first or second translucent electrode line portions connected to each other with the intersecting portions. The translucent relay electrodes overlie the interlayer insulating layers to electrically connect the first or second translucent electrode line portions, separated from each other with the intersecting portions, to each other.
Owner:JAPAN DISPLAY WEST

Method for pseudo-differential transmission using modal electrical variables

The invention relates to a method and a device for pseudo-differential transmission in interconnections used for sending a plurality of electrical signals.The ends of an interconnection having 4 transmission conductors and a return conductor distinct from the reference conductor are each connected to a termination circuit. Three damping circuits are connected between the return conductor and the reference conductor. The transmitting circuits receive at their inputs the signals from the 4 channels of the two sources, and are connected to the conductors of the interconnection. A transmitting circuit in the activated state produces modal electrical variables, each modal electrical variable being allocated to one and only one channel. The receiving circuits are connected to the conductors of the interconnection, each receiving circuit being such that the 4 channels of a source connected to a transmitting circuit in the activated state are sent to the four channels of the destinations, without noticeable echo, internal crosstalk and external crosstalk.
Owner:ZXNOISE LLC

Reversible electrochemical mirror for modulation of reflected radiation

An electrochemical mirror includes a transparent first electrode and a second electrode. An electrolytic solution, disposed between the first and second electrodes, contains ions of a metal which can electrodeposit on the electrodes. A negative electrical potential applied to the first electrode causes deposited metal to be dissolved from the second electrode into the electrolytic solution and to be electrodeposited from the solution onto the first electrode, thereby affecting the reflectivity of the mirror for electromagnetic radiation. A surface modification layer applied to the first electrode ensures that the electrodeposit is substantially uniform, resulting in a mirror layer which increases the reflectivity of the mirror. A positive electrical potential applied to the first electrode causes deposited metal to be dissolved from the first electrode and electrodeposited from the solution onto the second electrode, thereby decreasing the reflectivity of the mirror.
Owner:TELEDYNE SCI & IMAGING

Coated article having low-E coating with absorber layer(s)

A coated article is provided, having a coating supported by a glass substrate where the coating includes at least one color and / or reflectivity-adjusting absorber layer. The absorber layer(s) allows color tuning, and reduces the glass side reflection of the coated article and / or allows sheet resistance of the coating to be reduced without degrading glass side reflection. In certain example embodiments the absorber layer is provided between first and second dielectric layers which may be of substantially the same material and / or composition. In certain example embodiments, the coated article is capable of achieving desirable transmission, together with desired color, low reflectivity, and low selectivity, when having only one infrared (IR) reflecting layer of silver and / or gold. Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, monolithic windows, or the like.
Owner:GUARDIAN EURO S A R L +1

Laser-based system for memory link processing with picosecond lasers

A laser-based system for processing target material within a microscopic region without causing undesirable changes in electrical or physical characteristics of at least one material surrounding the target material, the system includes a seed laser, an optical amplifier, and a beam delivery system. The seed laser for generating a sequence of laser pulses having a first pre-determined wavelength. The optical amplifier for amplifying at least a portion of the sequence of pulses to obtain an amplified sequence of output pulses. The beam delivery system for delivering and focusing at least one pulse of the amplified sequence of pulses onto the target material. The at least one output pulse having a pulse duration in the range of about 10 picoseconds to less than 1 nanosecond. The pulse duration being within a thermal processing range. The at least one focused output pulse having sufficient power density at a location within the target material to reduce the reflectivity of the target material and efficiently couple the focused output into the target material to remove the target material.
Owner:GSI LUMONICS CORP

Multilayer optical adhesives and articles

Described are multilayer optical composites including a first layer having an index of refraction n1, an ith layer having an index of refraction ni greater than n1, and one or two or more intermediate layers between the first layer and the ith layer, wherein the indices of refraction of the intermediate layers are between n1 and ni, and the index of refraction of each intermediate layer increases in the order of position of each layer from the first layer.
Owner:3M INNOVATIVE PROPERTIES CO

Light-emitting element and display device

There has been a problem that difference in refractive index between an opposite substrate or a moisture barrier layer (passivation film) such as SiN provided thereover, and air is maintained large, and light extraction efficiency is low. Further, there has been a problem that peeling or cracking due to the moisture barrier layer is easily generated, which leads to deteriorate the reliability and lifetime of a light-emitting element. According to the present invention, a light-emitting element comprises a pixel electrode, an electroluminescent layer, a transparent electrode, a passivation film, a stress relieving layer, and a low refractive index layer, all of which are stacked sequentially. The stress relieving layer serves to prevent peeling of the passivation film. The low refractive index layer serves to reduce reflectivity of light generated in the electroluminescent layer in emitting to air. Therefore, a light-emitting element with high reliability and long lifetime and a display device using the light-emitting element can be provided.
Owner:SEMICON ENERGY LAB CO LTD

Electronically dimmable optical device

An electronically dimmable optical device, including, in sequence, an active absorbing polarizer; a first static reflective polarizer; an active polarization rotator; and a second static reflective polarizer; configured so that the reflectivity and / or transmissivity of the device can be controlled (increased or decreased) by application of a voltage across the active absorbing polarizer and / or the active polarization rotator. One or more polarization levels can be selected by controlling the voltage at the active absorptive polarizer such that setting the active absorptive polarizer to a selected polarization level determines the brightness of an image produced by the device.
Owner:ALPHAMICRON INC

Controlling polarization for liquid crystal displays

Certain embodiments of liquid crystal displays and liquid crystal display functional parts have low reflection for outdoor applications and also have the advantage of being able to provide increased contrast and brightness for certain convenient viewing directions for outdoor viewers wearing polarized sunglasses.
Owner:WANG RAN HONG RAYMOND +1

Method for forming resist underlayer film, patterning process using the same, and composition for the resist underlayer film

There is disclosed a method for forming a resist underlayer film of a multilayer resist film having at least three layers used in a lithography, comprising at least; a step of coating a composition for resist underlayer film containing a novolak resin represented by the following general formula (1) obtained by treating a compound having a bisnaphthol group on a substrate; and a step of curing the coated composition for the resist underlayer film by a heat treatment at a temperature above 300° C. and 600° C. or lower for 10 to 600 seconds. There can be provided a method for forming a resist underlayer film, and a patterning process using the method to form a resist underlayer film in a multilayer resist film having at least three layers used in a lithography, gives a resist underlayer film having a lowered reflectance, a high etching resistance, and a high heat and solvent resistances, especially without wiggling during substrate etching.
Owner:SHIN ETSU CHEM IND CO LTD

EUV collector debris management

A method and apparatus that may comprise an EUV light producing mechanism utilizing an EUV plasma source material comprising a material that will form an etching compound, which plasma source material produces EUV light in a band around a selected center wavelength comprising: an EUV plasma generation chamber; an EUV light collector contained within the chamber having a reflective surface containing at least one layer comprising a material that does not form an etching compound and / or forms a compound layer that does not significantly reduce the reflectivity of the reflective surface in the band; an etchant source gas contained within the chamber comprising an etchant source material with which the plasma source material forms an etching compound, which etching compound has a vapor pressure that will allow etching of the etching compound from the reflective surface. The etchant source material may comprises a halogen or halogen compound. The etchant source material may be selected based upon the etching being stimulated in the presence of photons of EUV light and / or DUV light and / or any excited energetic photons with sufficient energy to stimulate the etching of the plasma source material. The apparatus may further comprise an etching stimulation plasma generator providing an etching stimulation plasma in the working vicinity of the reflective surface; and the etchant source material may be selected based upon the etching being stimulated by an etching stimulation plasma. There may also be an ion accelerator accelerating ions toward the reflective surface. The ions may comprise etchant source material. The apparatus and method may comprise a part of an EUV production subsystem with an optical element to be etched of plasma source material.
Owner:ASML NETHERLANDS BV

Optical integrator, illumination optical device, exposure device, and exposure method

An optical integrator of a wavefront dividing type permits an arbitrary distance to be set between an entrance surface and an exit surface, without production of aberration and without reduction in reflectance on reflecting films. The optical integrator has a plurality of first focusing elements (first concave reflector elements 18a) arranged in parallel, a plurality of second focusing elements (second concave reflector elements 20a) arranged in parallel so as to correspond to the first focusing elements, and a relay optical system (19) disposed in an optical path between the first focusing elements and the second focusing elements. The relay optical system refocuses a light beam focused via one of the first focusing elements, on or near a corresponding second focusing element so as to establish an imaging relation of one-to-one correspondence between one of the first focusing elements and one of the second focusing elements.
Owner:NIKON CORP

Coating solution for forming a film for cutting off solar radiation and the film formed therefrom

A solution for forming a film having a high transmittance and a low reflectivity for visible light, a low transmittance for near infrared radiation, and a surface resistivity of at least 106 ohms / square. It contains fine particles of a hexaboride of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Th, Dy, Ho, Er, Tm, Yb, Lu, Sr or Ca, and fine particles of ITO or ATO in a weight ratio of from 0.1:99.9 to 90:10. Also disclosed is a film formed on at least one side of a resin film as a base, for cutting off solar heat radiation.
Owner:SUMITOMO METAL MINING CO LTD

Cube corner cavity based retroreflectors and methods for making same

InactiveUS6287670B1High specular reflectivityEfficient retroreflectionMirrorsDiffusing elementsSurface finishEngineering
Retroreflective sheeting includes a body layer having a structured surface with recessed faces and top surfaces, the recessed faces forming cube corner cavities. The recessed faces have a high specular reflectivity, while the top surfaces have a low specular reflectivity. In some embodiments a substantially continuous film of reflective material covers the structured surface, and a masking substance is provided over the reflective material at the top surfaces. Alternatively, the top surfaces are given a non-smooth surface finish so that the film of reflective material on those portions has a diffuse reflectivity. In other embodiments the film of reflective material is discontinuous, disposed selectively on the recessed faces and not on the top surfaces. A cover layer is also provided, and can bond at least to the top surfaces. Keeping the top surfaces substantially free of reflective material inhibits corrosion and can enhance the bond integrity. The top surfaces are preferably flat, and diffusely reflective to enhance the daytime whiteness of the sheeting.
Owner:3M INNOVATIVE PROPERTIES CO

Reflective optical stack for privacy display

A privacy display comprises a polarised output spatial light modulator, reflective polariser, plural polar control retarders and a polariser. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss, whereas off-axis light has reduced luminance. Further, display reflectivity is reduced for on-axis reflections of ambient light, while reflectivity is increased for off-axis light. The visibility of the display to off-axis snoopers is reduced by means of luminance reduction and increased frontal reflectivity to ambient light. In a public mode of operation, the liquid crystal retardance is adjusted so that off-axis luminance and reflectivity are unmodified.
Owner:REALD SPARK LLC

Method for constructing anti-reflection microstructure using single layer nanometer particle as etching blocking layer

The invention belongs to the surface patterning microstructure construction technique, which relates to a method for constructing a microstructure with anti-reflection performance on a foundation base by combining the self-assembly technique with the reactive ion beam etching technique. The method is to take monolayer polymeric micro-spheres, silicon dioxide micro-spheres and nano-particles of metal or metal oxides as a barrier layer and implement the RIE etching to the foundation base, then an approximate cone-shaped microstructure is constructed on the foundation base, and the structure has extreme high anti-reflection performance, thereby effectively improving the light energy utilization rate, reducing the interference of veiling glare in an optical system, increasing the optical transmittance, and further improving the sensitivity and stability of the optical system, and the method can be used for constructing large-area anti-reflection structures. The method of the invention has advantages of simple operation, changeable foundation base, strong applicability, good repeatability, low cost, high efficiency, adjustable anti-reflective applied wavelength and conformity to industrialized standards, and can be used for making photoelectric devices such as solar batteries and white light sensors.
Owner:JILIN UNIV

Electro-optical device, and projector and electronic apparatus including the same

An electro-optical device includes a liquid crystal device; a holder that holds the liquid crystal device; and an incident window bored through the holder, the incident window allowing a light beam emitted from a light source to be transmitted therethrough to the liquid crystal device. A window frame of the incident window has low reflectivity portions having a low reflectivity of diagonal light toward the liquid crystal device, the diagonal light being included in the light beam directed to the window frame.
Owner:SEIKO EPSON CORP

Solar Panel

The invention provides a solar panel having a panel front and a panel back, comprising an array of solar cells and an element comprising a visually distinguishable feature. Each of the solar cells has a front and a back, wherein at least the front is capable of converting at least a portion of solar light incident thereon into electrical energy. There are spacings between at least some of the solar cells. The element comprising the visually distinguishable feature is located at at least one position selected from the group consisting of between the panel back and the panel front, on the panel front, on the panel back, at the panel front, and at the panel back, such that the visually distinguishable feature is at least partially distinguishable on viewing the panel front. The nature of the visually distinguishable feature and / or the location of the element relative to the solar cells does not completely prevent solar light incident on the panel front from being incident on at least a portion of the array.
Owner:TRANSFORM SOLAR

Black reflector plate

In a system for thermal processing of a semiconductor substrate, an RTP system employs a reflector plate which is highly reflective of radiation in a target wavelength range, and less reflective of radiation outside that target wavelength range. In one embodiment, the reflector plate has a highly reflective portion overlying a less reflective portion, wherein the highly reflective portion is highly reflective of radiation in the target wavelength range. As radiation emitted by the substrate is received on the reflector, the radiation in the target wavelength range is reflected, thereby facilitating measurement of the substrate temperature by the pyrometer(s), while radiation outside the target wavelength range is absorbed, thereby facilitating cooling of the substrate.
Owner:APPLIED MATERIALS INC

Imprinted micro-louver structure method

A method of making a micro-louver structure includes coating a curable layer on a surface and imprinting a pattern of micro-channels in the curable layer. The micro-channels have a greater depth than width and are spaced apart by a separation distance greater than the width. The curable layer is at least partially cured to form a cured layer. A light-absorbing material is coated over the cured layer and in the micro-channels and at least a portion of the light-absorbing material removed from the surface of the cured layer leaving at least a portion of the light-absorbing material in the micro-channels. The light-absorbing material is cured to form a light-absorbing structure in each micro-channel.
Owner:EASTMAN KODAK CO

Image sensor and method for manufacturing the same

In a solid state imaging device, and a method of manufacture thereof, the efficiency of the transfer of available photons to the photo-receiving elements is increased beyond that which is currently available. Enhanced anti-reflection layer configurations, and methods of manufacture thereof, are provided that allow for such increased efficiency. They are applicable to contemporary imaging devices, such as charge-coupled devices (CCDs) and CMOS image sensors (CISs). In one embodiment, a photosensitive device is formed in a semiconductor substrate. The photosensitive device includes a photosensitive region. An anti-reflection layer comprising silicon oxynitride is formed on the photosensitive region. The silicon oxynitride layer is heat treated to increase a refractive index of the silicon oxynitride layer, and to thereby decrease reflectivity of incident light at the junction of the photosensitive region.
Owner:SAMSUNG ELECTRONICS CO LTD

Truncated pyramid structures for see-through solar cells

InactiveUS20100116316A1Low-cost metallurgical-gradeReduce effect of impurityPV power plantsSemiconductor/solid-state device manufacturingEngineeringSunlight
The present disclosure presents a partially-transparent (see-through) three-dimensional thin film solar cell (3-D TFSC) substrate. The substrate includes a plurality of unit cells. Each unit cell structure has the shape of a truncated pyramid, and its parameters may be varied to allow a desired portion of sunlight to pass through.
Owner:BEAMREACH SOLAR INC

High transmittance optical windows and method of constructing the same

Designs for ultra-high, broadband transmittance through windows over a wide range of incident angles are disclosed. The improvements in transmittance result from coating the windows with a new class of materials consisting of porous nanorods. A high transmittance optical window comprises a transparent substrate coated on one or both sides with a multiple layer coating. Each multiple layer coating includes optical films with a refractive index intermediate between the refractive index of the transparent substrate and air. The optical coatings are applied using an oblique-angle deposition material synthesis technique. The coating can be performed by depositing porous SiO2 layers using oblique angle deposition. The high transmittance window coated with the multiple layer coating exhibits reduced reflectance and improved transmittance, as compared to an uncoated transparent substrate.
Owner:MAGNOLIA OPTICAL TECH +1

Nano-structured thin film with reduced light reflection

The present invention is directed to a multilayer optical film, for use in a display or component thereof, comprising a substrate having a topmost layer that is an anti-reflective layer having a nano-structured surface, the layer comprising elongated-shaped silica particles. Another aspect of the present invention relates to a method of forming the single anti-reflective layer and its use in various applications including displays and components thereof.
Owner:EASTMAN KODAK CO

Phosphor single crystal substrate and method for preparing the same, and nitride semiconductor component using the same

A light emitting device having a phosphor substrate, which comprises nitride containing at least one element selected from Group XIII (IUPAC 1989) having a general formula XN, wherein X is at least one element selected from B, Al, Ga and In, a general formula XN:Y, wherein X is at least one element selected from B, Al, Ga and In, and Y is at least one element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd and Hg, or a general formula XN:Y,Z, wherein X is at least one element selected from B, Al, Ga and In, Y is at least one element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd and Hg, and Z is at least one element selected from C, Si, Ge, Sn, Pb, O and S. The phosphor substrate is prepared by crystallization from supercritical ammonia-containing solution and the light emitting device is formed by a vapor phase growth on the phosphor substrate so as to obtain a light emitting device which has a wavelength distribution emitting a white light etc. and a good yield.
Owner:AMMONO SP Z O O (PL) +1

Rugged low light reflectivity electrical contact

ActiveUS8141288B2Maximize attenuationLight reflectivity is minimizedFiring/trigger mechanismsCoupling device detailsElectrical connectionVolumetric Mass Density
The Low Reflectivity Contact has a low coefficient of light reflection, is rugged with respect to harsh ambient environmental conditions, provides a low resistance electrical connection, and is adapted for use in quick-connect applications. Light reflectivity of the contact is minimized by the use of a conductive mesh that is used to implement the electrical contact. The weave density and wire diameter of the conductive mesh maximizes the attenuation of reflected light in the visible spectrum, yet maintains high electrical conductivity and a lack of sensitivity to contamination via the choice of materials used to implement the Low Reflectivity Contact.
Owner:T WORX HLDG LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products