Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1105 results about "Nonlinear optical crystal" patented technology

Nonlinear optical crystals are widely used in modern optical science and technology for frequency conversion of laser light, i.e. to generate laser radiation at any specific wavelength in visible, UV or IR spectral regions.

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA

System for Generating Raman Vibrational Analysis Signals

A system for generating signals for Raman vibrational analysis, particularly for a CARS microscope or spectroscope of an external specimen, the system comprising a a laser source apt to emit at least one fundamental optical pulse in a first band of fundamental frequencies comprising at least one first (ωf1) and one second (ωf2) fundamental frequencies; a second-harmonic (SH) generating system comprising at least one nonlinear optical crystal for converting said at least one fundamental optical pulse into at least two second-harmonic optical pulses, i.e. a first second-harmonic pulse at a first second-harmonic frequency (ωp) of the first fundamental frequency (ωf1) and a second second-harmonic pulse at a second second-harmonic frequency (ωs) of the second fundamental frequency (ωf2), said second second-harmonic frequency being other than the first second-harmonic frequency, and a Raman vibrational analysis apparatus apt to receive said first and second second-harmonic pulses and direct them toward said specimen.According to an embodiment, the SH system comprises two nonlinear optical crystals, each including a ferroelectric crystal with periodic space-modulation of the sign of the optical susceptibility.In a different embodiment, the SH system comprises a ferroelectric crystal with aperiodic space-modulation of the sign of nonlinear optical susceptibility, with a period varying along the optical path of said at least one fundamental optical pulse, said crystal being apt to generate said first and second second-harmonic pulses.
Owner:POLITECNICO DI MILANO

Electromagnetic wave generating device

An electromagnetic wave generator encompasses a first pump beam emitter (2) configured to emit a first pump beam (hv1) having a wavelength larger than one micrometer; a second pump beam emitter (25) configured to emit a wavelength-tunable second pump beam (hv2) having a wavelength larger than one micrometer, the wavelength of which is different from the wavelength of the first pump beam (hv1); a nonlinear optical crystal (19) configured to generate an electromagnetic wave (hv3) of a difference frequency between the first pump beam (hv1) and second pump beam (hv2); and an optical system (M1, M2, 18) configured to irradiate the first pump beam (hv1) and second pump beam (hv2) to the nonlinear optical crystal (19), by adjusting an external intersection angle between the first pump beam (hv1) and second pump beam (hv2) within 0.5° at the difference frequency of 1 THz. Here, a frequency-tunable terahertz electromagnetic wave (hv3) is generated in the nonlinear optical crystal (19), by changing the frequency of the second pump beam (hv2), being liked with the change of the external intersection angle.
Owner:NISHIZAWA JUN ICHI +1

Compact solid-state laser

A compact optically-pumped solid-state laser designed for efficient nonlinear intracavity frequency conversion into desired wavelengths using periodically poled nonlinear crystals. These crystals contain dopants such as MgO or ZnO and / or have a specified degree of stoichiometry that ensures high reliability. The laser includes a solid-state gain media chip, such as Nd:YVO4, which also provides polarization control of the laser; and a periodically poled nonlinear crystal chip such as PPMgOLN or PPZnOLT for efficient frequency doubling of the fundamental infrared laser beam into the visible wavelength range. The described designs are especially advantageous for obtaining low-cost green and blue laser sources.
Owner:OOO SPECTRALUS

Nonlinear optical crystal of potassium borate chloride compound and preparation method as well as application thereof

The invention relates to a nonlinear optical crystal of a potassium borate chloride compound and a preparation method as well as application thereof. The chemical formula of the compound is K3B6O10Cl, and the molecular weight of the compound is 377.61. The crystal does not have a symmetric center and belongs to a trigonal system and a space group R3m, and cell parameters are as follows: a=10.0624(14), b=10.0624(14), c=8.8361(18), Z=3, and V=774.8 (2). The powder frequency-doubled effect reaches about 3 times of KDP(KH2PO4), the Mohs hardness is 4-5, and the light transmission waveband is 165nm-3460nm. A solid phase reaction method is used for synthesizing the compound, and a cosolvent method is used for growing the crystal. The crystal has the advantages of simple operation, low cost, large size, short growth cycle, few inclusion enclaves and larger mechanical hardness, and can be cut, polished, processed and saved easily. The crystal is used for generating twofold frequency or three-fold frequency or fourfold frequency or fivefold frequency harmonic light output for laser beams of which the wavelength is 1064nm.
Owner:XINJIANG TECHN INST OF PHYSICS & CHEM CHINESE ACAD OF SCI

Growth method of organic nonlinear optical crystal

The invention belongs to the technical field of crystal growth and relates to a growth method of organic nonlinear optical crystal. The growth method comprises the following steps of: firstly, drying a DAST (sulfur trifluoride) crystal growth raw material, dissolving the DAST crystal growth raw material in an absolute methanol solution to prepare a DAST methanol solution; then, heating and filtering the DAST methanol solution, and transferring the DAST methanol solution into a wild-mouth bottle; putting a polyfluortetraethylene plate in the wild-mouth bottle, and sealing the wild-mouth bottle; putting the wild-mouth bottle in a sealed water bath heating device to be thermally insulated, and cooling the wild-mouth bottle until the DAST crystal stops growing, taking out the crystal DAST crystal, namely, obtaining the DAST crystal with large surface area and thickness. The growth method is simple, the principle is scientific, the growth environmental is friendly, the cost is low, and the grown DAST crystal is large in geometric dimension, high in transmittance and convenient to be further processed and utilized.
Owner:QINGDAO UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products