Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

6233results about "Fibre transmission" patented technology

Ultraviolet laser apparatus and exposure apparatus using same

An ultraviolet laser apparatus having a single-wavelength oscillating laser generating laser light between an infrared band and a visible band, an optical amplifier for amplifying the laser light, and a wavelength converting portion converting the amplified laser light into ultraviolet light using a non-linear optical crystal. An exposure apparatus transfers a pattern image of a mask onto a substrate and includes a light source having a laser apparatus emitting laser light having a single wavelength, a first fiber optical amplifier for amplifying the laser light, a light dividing device for dividing or branching the amplified laser light into plural lights, and second fiber optical amplifiers for amplifying the plural divided or branched lights, respectively, and a transmission optical system for transmitting the laser light emitted from the light source to the exposure apparatus.
Owner:NIKON CORP

Shaft, e.g., for an electro-mechanical surgical device

A shaft being, e.g., flexible, that includes an elongated outer sheath, at least one drive shaft disposed within the outer sheath and a ring non-rotatably mounted on the at least one rotatable drive shaft and at least one light source mounted within the shaft, such that, upon rotation of the at least one rotatable drive shaft, the ring alternately blocks and allows light from the light source to be detected. The shaft may also include a moisture sensor disposed within the outer sheath of the shaft and configured to detect moisture within the outer sheath. The shaft may include couplings that connect a distal end of the outer sheath to a surgical attachment and a proximal end of the outer sheath to a remote power console.
Owner:TYCO HEALTHCARE GRP LP

Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier

An apparatus generates femtosecond pulses from laser amplifiers by nonlinear frequency conversion. The implementation of nonlinear frequency-conversion allows the design of highly nonlinear amplifiers at a signal wavelength (SW), while still preserving a high-quality pulse at an approximately frequency-doubled wavelength (FDW). Nonlinear frequency-conversion also allows for limited wavelength tuning of the FDW. As an example, the output from a nonlinear fiber amplifier is frequency-converted. By controlling the polarization state in the nonlinear fiber amplifier and by operating in the soliton-supporting dispersion regime of the host glass, an efficient nonlinear pulse compression for the SW is obtained. The generated pulse width is optimized by utilizing soliton compression in the presence of the Raman-self-frequency shift in the nonlinear fiber amplifier at the SW. High-power pulses are obtained by employing fiber amplifiers with large core-diameters. The efficiency of the nonlinear fiber amplifier is optimized by using a double clad fiber (i.e., a fiber with a double-step refractive index profile) and by pumping light directly into the inner core of this fiber. Periodically poled LiNbO3 (PPLN) is used for efficient conversion of the SW to a FDW. The quality of the pulses at the FDW can further be improved by nonlinear frequency conversion of the compressed and Raman-shifted signal pulses at the SW. The use of Raman-shifting further increases the tuning range at the FDW. For applications in confocal microscopy, a special linear fiber amplifier is used.
Owner:IMRA AMERICA

Intelligent backhaul radio and antenna system

A intelligent backhaul radio have an advanced antenna system for use in PTP or PMP topologies. The antenna system provides a significant diversity benefit. Antenna configurations are disclosed that provide for increased transmitter to receiver isolation, adaptive polarization and MIMO transmission equalization. Adaptive optimization of transmission parameters based upon side information provided in the form of metric feedback from a far end receiver utilizing the antenna system is also disclosed.
Owner:COMS IP HLDG LLC

Mode locking methods and apparatus

In one aspect the invention relates to a frequency varying wave generator. The generator includes a gain element adapted to amplify a wave having a wavelength; a time varying tunable wavelength selective filter element in communication with the gain element, the tunable filter element adapted to selectively filter waves during a period T; and a feedback element in communication with the tunable filter element and the gain element, wherein the tunable wavelength selective filter element, the gain element and the feedback element define a circuit such that the roundtrip time for the wave to propagate through the circuit is substantially equal to a non-zero integer multiple of the period T.
Owner:MASSACHUSETTS INST OF TECH

System and method for setting audio output channels of speakers

A location detecting apparatus for detecting a location of a speaker includes a communication unit which communicates with a plurality of speakers, a plurality of sensors which sense optical signals respectively output from the plurality of speakers; and a controller which determines locations of the plurality of speakers according to a result of the sensing by the plurality of sensors and control the communication unit to transmit the determined location information of the plurality of speakers to an external apparatus, wherein the external apparatus sets audio output channels corresponding to the plurality of speakers based on the determined location information of the plurality of speakers.
Owner:SAMSUNG ELECTRONICS CO LTD

Fiber array unit with integrated optical power monitor

A technique for monitoring optical power in a fiber array unit having a plurality of optical transmission waveguides terminating at an edge thereof for carrying optical signals to and / or from a PLC. A tapping filter is placed within a slit formed in the substrate and interrupting the transmission channels, thereby tapping at least some of the optical power from the channels and directing the tapped optical power toward respective photodetector channels for detection, while allowing other optical power to continue transmission in the at least one channel of the fiber array unit.
Owner:ZHU HAI BEN JIA TECH CO LTD +1

Hinged parking in fiber distribution hubs

A parking adapter is provided that may include a plurality of receptacles configured to receive a like plurality of connectors, where each connector is associated with an optical fiber. The parking adapter may include a dust cap post configured to receive a connector dust cap and a mounting device configured to removeably couple the parking adapter to a panel.
Owner:COMMSCOPE TECH LLC

Method of activating optical communication system, channel increasing/decreasing method, and computer-readable recording medium

The invention relates to a method of activating an optical communication system comprising a plurality of optical amplifiers having an optical amplifier, between optical transmission lines in which wavelength-division multiplex optical signals are transmitted. The method comprises steps of: generating a desired slope in a desired wavelength range of a gain wavelength curve of the optical amplifier; adjusting an output of the optical amplifier to a desired output level; performing the above two steps in a plurality of optical repeater stations, the steps being carried out in sequence from the first to the last optical repeater stations; and adjusting a level in each optical signal in the wavelength-division multiplex optical signal so as to have substantially constant optical signal-to-noise ratios in the optical signals to be received. Activating the optical communication system according to this procedure allows proper execution of gain slope compensation, output control, and pre-emphasis control.
Owner:FUJITSU LTD

Surface plasmon devices

A device including an input port configured to receive an input signal is described. The device also includes an output port and a structure, which structure includes a tunneling junction connected with the input port and the output port. The tunneling junction is configured in a way (i) which provides electrons in a particular energy state within the structure, (ii) which produces surface plasmons in response to the input signal, (iii) which causes the structure to act as a waveguide for directing at least a portion of the surface plasmons along a predetermined path toward the output port such that the surface plasmons so directed interact with the electrons in a particular way, and (iv) which produces at the output port an output signal resulting from the particular interaction between the electrons and the surface plasmons.
Owner:UNIV OF COLORADO THE REGENTS OF

Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method

A method and apparatus use a photonic-crystal fiber having a very large core while maintaining a single transverse mode. In some fiber lasers and amplifiers having large cores problems exist related to energy being generated at multiple-modes (i.e., polygamy), and of mode hopping (i.e., promiscuity) due to limited control of energy levels and fluctuations. The problems of multiple-modes and mode hopping result from the use of large-diameter waveguides, and are addressed by the invention. This is especially true in lasers using large amounts of energy (i.e., lasers in the one-megawatt or more range). By using multiple small waveguides in parallel, large amounts of energy can be passed through a laser, but with better control such that the aforementioned problems can be reduced. An additional advantage is that the polarization of the light can be maintained better than by using a single fiber core.
Owner:LOCKHEED MARTIN CORP

High-energy eye-safe pulsed fiber amplifiers and sources operating in erbium's L-band

InactiveUS7872794B1Enhance efficiency and energy storageHigh energyLaser detailsFibre transmissionFiberHigh energy
An apparatus and that provide an optical-fiber amplifier having at least one erbium-doped fiber section and an optical pump coupled to the erbium-doped fiber section, wherein the apparatus is operable to amplify signal pulses to high energy in the erbium-doped fiber section, the pulses having a wavelength in the range of about 1565 nm to about 1630 nm. In some embodiments, the amplifying fiber is ytterbium free.
Owner:LOCKHEED MARTIN CORP

All-fiber integrated high power coherent beam combination

A fiber laser amplifier system including a master oscillator that generates a signal beam. A splitter splits the signal beam into a plurality of fiber beams where a separate fiber beam is sent to a fiber amplifier for amplifying the fiber beam. A tapered fiber bundle couples all of the output ends of all of the fiber amplifiers into a combined fiber providing a combined output beam. An end cap is optically coupled to an output end of the tapered fiber bundle to expand the output beam.
Owner:NORTHROP GRUMMAN SYST CORP

All-fiber chirped pulse amplification systems

By compensating polarization mode-dispersion as well chromatic dispersion in photonic crystal fiber pulse compressors, high pulse energies can be obtained from all-fiber chirped pulse amplification systems. By inducing third-order dispersion in fiber amplifiers via self-phase modulation, the third-order chromatic dispersion from bulk grating pulse compressors can be compensated and the pulse quality of hybrid fiber / bulk chirped pulse amplification systems can be improved. Finally, by amplifying positively chirped pulses in negative dispersion fiber amplifiers, low noise wavelength tunable seed source via anti-Stokes frequency shifting can be obtained.
Owner:IMRA AMERICA

Method and system for optoelectronics transceivers integrated on a CMOS chip

Methods and systems for optoelectronics transceivers integrated on a CMOS chip are disclosed and may include receiving optical signals from optical fibers via grating couplers on a top surface of a CMOS chip, which may include a guard ring. Photodetectors may be integrated in the CMOS chip. A CW optical signal may be received from a laser source via grating couplers, and may be modulated using optical modulators, which may be Mach-Zehnder and / or ring modulators. Circuitry in the CMOS chip may drive the optical modulators. The modulated optical signal may be communicated out of the top surface of the CMOS chip into optical fibers via grating couplers. The received optical signals may be communicated between devices via waveguides. The photodetectors may include germanium waveguide photodiodes, avalanche photodiodes, and / or heterojunction diodes. The CW optical signal may be generated using an edge-emitting and / or a vertical-cavity surface emitting semiconductor laser.
Owner:CISCO TECH INC

System, method and terminal processing apparatus for optical fiber transmission

Disclosed by the present invention is a system and method for optical fiber transmission. The switching portion of the present invention adopts the single-layered integrated switching technology so as to ensure a relatively simple and easy maintenance compared with the switching in a traditional communication network where said switching is made in the service network layer and the bearer network layer, respectively. Moreover, the present invention implements data transmission via optical fiber throughout the entire telecommunication system such that demands for bandwidth resources are satisfied during the whole data transmission process and the QoS (Quality of Service) of different services as well as rapid and un-blocking switching of the services are ensured in the telecommunication system. Therefore, the present invention can implement on-demand allocation of bandwidth resources, enhancing the flexibility in network resource management while a subscriber can apply for bandwidth resources based on its demand, which satisfies the individual needs of the user.
Owner:HUAWEI TECH CO LTD

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA

Radio communication system

The present invention is directed to a wireless communication system capable of keeping a level of a wireless signal received by a relay apparatus (20) within a predetermined dynamic range. In a control apparatus (10), a transmitting section (102) converts a downstream electric signal into a downstream optical signal and transmits the downstream optical signal to the relay apparatus (20) via an optical transmission path (40). The relay apparatus (20) converts the received downstream optical signal into a downstream electric signal and transmits the downstream electric signal as a wireless signal to a wireless communication terminal (30) from a transmitting / receiving antenna section (204). In the relay apparatus (20), a level adjustment section (207) adjusts the level of the wireless signal transmitted by the relay apparatus (20) such that the receiving level of the wireless signal received by the relay apparatus is kept within a predetermined range.
Owner:PANASONIC CORP

Shaft, e.g., for an electro-mechanical surgical device

A shaft being, e.g., flexible, that includes an elongated outer sheath, at least one drive shaft disposed within the outer sheath and a ring non-rotatably mounted on the at least one rotatable drive shaft and at least one light source mounted within the shaft, such that, upon rotation of the at least one rotatable drive shaft, the ring alternately blocks and allows light from the light source to be detected. The shaft may also include a moisture sensor disposed within the outer sheath of the shaft and configured to detect moisture within the outer sheath. The shaft may include couplings that connect a distal end of the outer sheath to a surgical attachment and a proximal end of the outer sheath to a remote power console.
Owner:COVIDIEN LP

Amplifying Optical Fiber and Method of Manufacturing

Disclosed is an amplifying optical fiber having a central core and an optical cladding surrounding the central core. The central core is based on a silica matrix that includes nanoparticles, which are composed of a matrix material that includes doping ions of at least one rare earth element. The amplifying optical fiber can be employed, for example, in an optical amplifier and an optical laser.
Owner:DRAKA COMTEQ BV

Optical Coupler Devices, Methods of Their Production and Use

The present invention relates in general to coupling of light from one or more input waveguides to an output waveguide or output section of a waveguide having other physical dimensions and / or optical properties than the input waveguide or waveguides. The invention relates to an optical component in the form of a photonic crystal fibre for coupling light from one component / system with a given numerical aperture to another component / system with another numerical aperture. The invention further relates to methods of producing the optical component, and articles comprising the optical component, and to the use of the optical component. The invention further relates to an optical component comprising a bundle of input fibres that are tapered and fused together to form an input coupler e.g. for coupling light from several light sources into a single waveguide. The invention still further relates to the control of the spatial extension of a guided mode (e.g. a mode-field diameter) of an optical beam in an optical fibre. The invention relates to a tapered longitudinally extending optical waveguide having a relatively larger cross section that over a certain longitudinal distance is tapered down to a relatively smaller cross section wherein the spatial extent of the guided mode is substantially constant or expanding from the relatively larger to the relatively smaller waveguide cross section. The invention may e.g. be useful in applications such as fibre lasers or amplifiers, where light must be coupled efficiently from pump sources to a double clad fibre.
Owner:CRYSTAL FIBRE AS

Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied

An optical amplifying apparatus which includes an optical amplifier, an optical attenuator and a controller. The optical amplifier amplifies a light signal having a variable number of channels. The optical attenuator passes the amplified light signal and has a variable light transmissivity. Prior to varying the number of channels in the light signal, the controller varies the light transmissivity of the optical attenuator so that a power level of the amplified light signal is maintained at an approximately constant level that depends on the number of channels in the light signal prior to the varying the number of channels. While the number of channels in the light signal is being varied, the controller maintains the light transmissivity of the optical attenuator to be constant. Subsequent to varying the number of channels in the light signal, the controller varies the light transmissivity of the optical attenuator so that a power level of the amplified light signal is maintained at an approximately constant level that depends on the number of channels in the light signal subsequent to the varying the number of channels.
Owner:FUJITSU LTD

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products