Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1945 results about "Single fiber" patented technology

Single-mode fibers (also called monomode fibers) are optical fibers which are designed such that they support only a single propagation mode (LP 01) per polarization direction for a given wavelength.

Control of an optical fiber scanner

InactiveUS6845190B1Remove nonlinear behaviorRobust cancellationSurgeryEndoscopesOptical scannersPhotodetector
Controls for an optical scanner, such as a single fiber scanning endoscope (SFSE) that includes a resonating optical fiber and a single photodetector to produce large field of view, high-resolution images. A nonlinear control scheme with feedback linearization is employed in one type of control to accurately produce a desired scan. Open loop and closed loops controllers are applied to the nonlinear optical scanner of the SFSE. A closed loop control (no model) uses either phase locked loop and PID controllers, or a dual-phase lock-in amplifier and two PIDs for each axis controlled. Other forms of the control that employ a model use a frequency space tracking control, an error space tracking control, feedback linearizing controls, an adaptive control, and a sliding mode control.
Owner:UNIV OF WASHINGTON

Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method

A method and apparatus use a photonic-crystal fiber having a very large core while maintaining a single transverse mode. In some fiber lasers and amplifiers having large cores problems exist related to energy being generated at multiple-modes (i.e., polygamy), and of mode hopping (i.e., promiscuity) due to limited control of energy levels and fluctuations. The problems of multiple-modes and mode hopping result from the use of large-diameter waveguides, and are addressed by the invention. This is especially true in lasers using large amounts of energy (i.e., lasers in the one-megawatt or more range). By using multiple small waveguides in parallel, large amounts of energy can be passed through a laser, but with better control such that the aforementioned problems can be reduced. An additional advantage is that the polarization of the light can be maintained better than by using a single fiber core.
Owner:LOCKHEED MARTIN CORP

SINGLE FIBER TRANSCEIVER with FAULT LOCALIZATION

InactiveUS20050201761A1Added costAdded complexityElectromagnetic transmittersMicrocontrollerTransceiver
A fiber optic transceiver adapted for use in an optical fiber data transmission system is capable of detecting reflection problems in fiber optic links and providing information related to the distance to the point of reflection. The fiber optic transceiver contains a fiber interface, a receiver, a transmitter, and a microcontroller. The microcontroller controls the transmitter to modulate the laser power to transmit impulse test data and the transceiver includes circuitry and microcode to detect reflection due to fiber connection problems. This enables trouble shooting during installation and / or reconfiguring the connection automatically, in response to a connection problem, and provides a physical layer link.
Owner:OPTICAL ZONU CORP

Optical fiber cable inlet device

An inlet device is described for inserting a cable containing optical fibers into a telecommunications enclosure. The inlet device includes a housing with a strength member securing section configured to fasten at least one strength member to the housing. The inlet device further includes a fiber guide device. The inlet device may be used in a single fiber optical cable assembly or multi-fiber optical cable assembly. A method for preparing a cable assembly is described. A telecommunications enclosure including an inlet device is also described.
Owner:CORNING RES & DEV CORP

Optical fiber coupling configurations for a main-remote radio base station and a hybrid radio base station

A main-remote radio base station system includes plural remote radio units. Fiber costs are significantly reduced using a single optical fiber that communicates information between the main unit and the remote units connected in a series configuration. Information from the main unit is sent over a first fiber path to the remote units so that the same information is transmitted over the radio interface by the remote units at substantially the same time. The main unit receives the same information from each of the remote units over a second fiber path at substantially the same time. Delay associated with each remote unit is compensated for by advancing a time when information is sent to each remote unit. A data distribution approach over a single fiber avoids the expense of separate fiber couplings between the main unit and each RRU. That approach also avoids the expense of WDM technology including lasers, filters, and OADMs as well as the logistical overhead needed to keep track of different wavelength dependent devices.
Owner:TELEFON AB LM ERICSSON (PUBL)

Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them

The present invention provides an aggregate of nanofibers having less spread of single fiber fineness values that can be used in wide applications without limitation to the shape and the kind of the polymer, and a method for manufacturing the same. The present invention is an aggregate of nanofibers made of a thermoplastic polymer having single fiber fineness by number average in a range from 1×10−7 to 2×10−4 dtex and single fibers of 60% or more in fineness ratio have single fiber fineness in a range from 1×10−7 to 2×10−4 dtex.
Owner:TORAY IND INC

Optical sensing device containing fiber bragg gratings

A new optical sensing device containing fiber Bragg gratings, a scanning bandpass filter, an interferometer and multiple photodetectors is disclosed. The present invention also describes a new system and method for fibre Bragg grating (FBG) sensor interrogation and multiplexing. The new system combines a scanning Fabry-Perot (SFP) bandpass filter used to wavelength-multiplex multiple gratings in a single fiber, and an unbalanced Mach-Zehnder fibre interferometer made with a 3x3 coupler to detect strain-induced wavelength shifts. A passive technique for interferometer drift compensation using non-sensing FBGs is included in the system. A complete prototype system interrogates four gratings in a single fiber at a Nyquist sampling rate up to 10 kHz, with a noise floor measured near 4 nepsi Hz-½ above 0.1 Hz. The inclusion of the interferometer drift compensation technique is shown to make quasi-static measurements feasible.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Integrated nanofiber filter media

A filter media is formed from electrospun fine fibers and coarse fibers which are entangled and integrated together into a single fiber composite filter media layer.
Owner:CLARCOR INC

Single-Fiber Drop Cables for MDU Deployments

Disclosed is an improved optical fiber that employs a novel coating system. When combined with a bend-insensitive glass fiber, the novel coating system according to the present invention yields an optical fiber having exceptionally low losses.The coating system features (i) a softer primary coating with excellent low-temperature characteristics to protect against microbending in any environment and in the toughest physical situations and, optionally, (ii) a colored secondary coating possessing enhanced color strength and vividness.The improved coating system provides optical fibers that offer significant advantages to single-fiber drop cables, such as those employed for Multiple Dwelling Unit (MDU) applications.
Owner:DRAKA COMTEQ BV

Integrated remote control signaling

A serial transmission protocol and architecture are provided that can be used to forward remote control data between sink (e.g., DTV) and source (e.g., DVD player) devices, in addition to other data such as video and / or audio or other payload. The target device need not be in the line of sight of the remote control beam. Daisy-chained devices will pass the remote control signal to the appropriate target device, so that the user can point any remote control at the DTV or other conveniently located device in the system, and still control the actual target device. The communication channel that carries payload, processing control, and remote control data can be implemented with wired or wireless of technology (or a combination thereof). In one particular embodiment, the communication channel is implemented with a single fiber. A number of presentation and entertainment system applications that employ remote control technology (e.g., home theater, audio, and computer implemented systems) can benefit from embodiments of the present invention.
Owner:OWLINK TECH

Line fiber for WDM optical fiber transmission systems

The invention provides a monomode optical fiber having, at a wavelength of 1550 nm: an effective section area greater than or equal to 60 mum2; chromatic dispersion close to 8 ps / (nm.km); a chromatic dispersion slope of absolute value less than 0.07 ps / (nm2.km). In the range of wavelengths used in a WDM transmission system, typically 1530 nm to 1620 nm, the fiber has chromatic dispersions greater than 7 ps / (nm.km), thereby making it possible to limit non-linear effects. The invention also provides a WDM optical fiber transmission system using such a fiber as a line fiber. The small slope of its chromatic dispersion is an advantage in such a system.
Owner:DRAKA COMTEQ BV

Microstructured optical fiber

An optical fiber suitable for use in a single fiber or multifiber optical connector or array is structured with a core region and a cladding region surrounding the core region, and exhibits a bending loss of a fundamental mode of the fiber at a wavelength λ is lower than 0.1 dB / m at a diameter of 15 mm, a mode-field diameter of the fundamental mode at an end of the fiber at the wavelength λ is between 8.0 μm and 50 λ, and a bending loss of a first higher-order mode at the wavelength λ is higher than 1 dB / m at a diameter of 30 mm. The fiber may be multistructured, wherein the cladding region comprises a main medium and a plurality of sub medium regions therein to form a spatially uniform average refractive index.
Owner:SUMITOMO ELECTRIC IND LTD

Nano-Fiber Compound Solutions, Emulsions And Gels, Production Method Thereof, Nano-Fiber Synthetic Papers, And Production Method Thereof

This invention provides compound solutions, emulsions and gels excellent in homogeneous dispersibility and long-term dispersion stability and also excellent in the properties as cosmetics, using disarranged nanofibers not limited in either form or polymer, widely applicable and small in the irregularity of single fiber diameter. This invention also provides a method for producing them. Furthermore, this invention provides synthetic papers composed of fibers, small in pore area and uniform in pore size, using disarranged nanofibers, and also provides a method for producing them. This invention provides compound solutions, emulsions, gels and synthetic papers containing disarranged nanofibers of 1 to 500 nm in number average diameter and 60% or more in the sum Pa of single fiber ratios.
Owner:TORAY IND INC

Multi-segment photonic-crystal-rod waveguides for amplification of high-power pulsed optical radiation and associated method

A method and apparatus use a photonic-crystal fiber having a very large core while maintaining a single transverse mode. In some fiber lasers and amplifiers having large cores problems exist related to energy being generated at multiple-modes (i.e., polygamy), and of mode hopping (i.e., promiscuity) due to limited control of energy levels and fluctuations. The problems of multiple-modes and mode hopping result from the use of large-diameter waveguides, and are addressed by the invention. This is especially true in lasers using large amounts of energy (i.e., lasers in the one-megawatt or more range). By using multiple small waveguides in parallel, large amounts of energy can be passed through a laser, but with better control such that the aforementioned problems can be reduced. An additional advantage is that the polarization of the light can be maintained better than by using a single fiber core.
Owner:LOCKHEED MARTIN CORP

Wavelength selective optical couplers

A wavelength selective optical fiber coupler having various applications in the field of optical communications is disclosed. The coupler is composed of dissimilar waveguides in close proximity. A light induced, permanent index of refraction grating is recorded in the coupler waist The grating filters and transfers energy within a particular range of wavelengths from a first waveguide to a second waveguide. Transversely asymmetric gratings provide an efficient means of energy transfer. The coupler can be used to combine or multiplex a plurality of lasers operating at slightly different wavelengths into a single fiber. Other embodiments such as a dispersion compensator and gain flattening filter are disclosed.
Owner:ARROYO OPTICS

Pulsed system and method for fiber optic sensor

A system and method is disclosed for generating, propagating, and detecting light pulses for use with a fiber optic transducer array. The system preferably uses two pulses to provide fixed and relatively short interferometer path differences to thereby reduce coherent light noise. The system preferably uses a surface acoustic wave device for chirping the light pulses to thereby spread noise over a wider bandwidth so as to suppress noise. A coherent light source is preferably amplitude modulated to produce an initial pulse. In one embodiment, that initial pulse is chirped and split into two pulses. One of the two pulses is delayed while the other is frequency shifted. The two pulses are combined onto a single fiber optic path and applied to the fiber optic transducer array. After being acted on by the fiber optic transducer array, the two pulses are photodetected and processed to obtain the information about the physical phenomena to be detected.
Owner:NAVY US SEC THE NAVY THE

Wet type nonwoven fabric and filter

The present invention is a wet type nonwoven fabric that includes two or more kinds of fibers, wherein the wet type nonwoven fabric includes a short fiber A that is constituted of a fiber-forming thermoplastic polymer and has a fiber diameter D of from 100 to 1000 nm and the ratio of a fiber length L to the fiber diameter D, L / D, in the range of from 100 to 2500 in from 4 to 50% by weight relative to the total weight of the nonwoven fabric, and a binder fiber B that has a single fiber fineness of 0.1 dtex or less in from 10 to 50% by weight relative to the total weight of the nonwoven fabric.
Owner:TEIJIN FRONTIER CO LTD

Wiping sheet and production thereof

InactiveUS6054202AHigh tensile strengthImproving surface frictional strengthCarpet cleanersFloor cleanersSingle fiberEngineering
Disclosed herein is a wiping sheet composed of two pieces of spunlace nonwoven fabrics containing heat-shrinkable fiber which are fusion-bonded together with fusion-bonding lines which extend in the cross direction perpendicular to the machine direction. The fusion-bonding lines are formed such that their pitch in the machine direction is shorter than one half of the fiber length so that each fusion-bonding line intersects a single fiber at 3 or more points. This structure prevents surface fluffing and imparts a high surface frictional strength and a high bending resistance for comfortable wiping work.
Owner:UNI CHARM CORP

Optical fiber cable inlet device

An inlet device is described for inserting a cable containing optical fibers into a telecommunications enclosure. The inlet device includes a housing with a strength member securing section configured to fasten at least one strength member to the housing. The inlet device further includes a fiber guide device. The inlet device may be used in a single fiber optical cable assembly or multi-fiber optical cable assembly. A method for preparing a cable assembly is described. A telecommunications enclosure including an inlet device is also described.
Owner:CORNING RES & DEV CORP

Multi-ferrule connector for multicore fiber terminations

ActiveUS20130259429A1High-density packing footprintCoupling light guidesHigh densitySingle fiber
A ganged connector housing Is configured to receive a plurality of single-fiber connectors. Each connector is removably retainable at a respective location in the connector housing. Each single-fiber connector comprises a ferrule configured to receive and retain a single multicore fiber. The single-fiber connectors have a high-density packing footprint within the connector housing. Each single-fiber connector and its respective ferrule is configured to enable individual repositioning, tuning, alignment, repair or replacement of a respective multicore fiber terminated therein, independent of other optical fibers within the plurality of single fiber ferrules, and without requiring replacement of the entire set of multicore fibers.
Owner:OFS FITEL LLC

Opto-electronic distributed crossbar switch

The invention is an optoelectronic (OE) crossbar switch (10) for both digital and analog signals, used either separately or combined, whose functions are reconfigurable and distributed. The invention allows multiple senders to be connected with multiple receivers simultaneously. The invention uses optical filters for wavelength division multiplexing and demultiplexing (WDM and WDD). A single fiber module input / output port carries multiple bi-directional signals that are optically filtered out in the module using WDM / WDD filters (12) at each sender / receiver and then selected after optical filtering using photodiode detectors (15) as detectors and switches. Laser transmitters (14), photodiode detectors (15), and smart electronics (18) are used to implement the crossbar switch functions. In addition to optical filters, the use of time division multiplexing (TDM) and code division multiple access (CDMA) implemented either electrically or optically are taught to increase the number of independent users that the distributed switch handles. The switch can be cascaded with other switches using optical bridging circuits (100) to create a scaleable interconnect fabric. An arbitration technique can be used which allows signals to be sent only when the intended receiver is capable of accepting these signals.
Owner:RAYTHEON CO

Single-fiber protection in telecommunications networks

A solution for detecting and recovering from a failure in a protected single-fiber passive optical network. A detector is used to detect the degradation in power level of optical signals. Furthermore, the invention discloses a variable symmetric split ratio approach to improve the number of splits (e.g. the number of ONUs). A single-fiber passive optical network is disclosed that uses a plurality of passive nodes connected in the optical fiber between the interfaces, wherein in the passive nodes 2-by-2 splitters / combiners are used to couple optical power from and into the optical fiber at a predetermined split ratio.
Owner:SCHOFIELD TECH

Apparatus and method for optically amplified imaging

An apparatus and method for ultrafast real-time optical imaging that can be used for imaging dynamic events such as microfluidics or laser surgery is provided. The apparatus and methods encode spatial information from a sample into a back reflection of a two-dimensional spectral brush that is generated with a two-dimensional disperser and a light source that is mapped in to the time domain with a temporal disperser. The temporal waveform is preferably captured by an optical detector, converted to an electrical signal that is digitized and processed to provide two dimensional and three dimensional images. The produced signals can be optically or electronically amplified. Detection may be improved with correlation matching against a database in the time domain or the spatial domain. Embodiments for endoscopy, microscopy and simultaneous imaging and laser ablation with a single fiber are illustrated.
Owner:RGT UNIV OF CALIFORNIA

Double core single optical fiber optical tweezers for capturing minute particle and its manufacture method

InactiveCN101149449AOptimizing Mechanical Trapping PropertiesImproved capture characteristicsRadiation/particle handlingOptical fibre with multilayer core/claddingLight beamSingle fiber
This invention provides a kind of twin-core single fiber light probe which is used to seize minute particle and its preparation method. It includes the fiber, the said fiber is win-core fiber which includes two individual fiber cores in fiber public cladding, one end of the fiber is fused probe and the sintered cone fiber tip, and one end of the cone fiber tip has lenticule. The twin-core fiber light probe in this invention has two optical conversion section, one is twin-beam across lange-angle derivation collection section, changes the transmit direction of light wave in each fiber core of the twin-core fiber by the cone fiber whose cone angle change quickly, to lead the two beam to the tip end of the cone fiber; the other is light field compression section which forms large grads light field, realizes the light field compression of two beam by the lenticule in fiber tip end. The twin-core fiber light probe provided in this invention can be used for seizing the live biologic cell or the fixation, transpor and assembly of minute particles.
Owner:HARBIN ENG UNIV

Single fiber endoscopic full-field optical coherence tomography (OCT) imaging probe

A single fiber full-field optical coherence tomography (OCT) imaging probe (300) includes a hollow tube (301), and a single fiber (305) disposed within the tube for transmitting light received from a broadband light source to a beam splitter (350) in the tube optically coupled to the single fiber (305). The beam splitter (350) splits the light into a first and a second optical beam, wherein the first beam is optically coupled to a reference arm including a MEMS reference micromirror (335) which provides axial scanning and the second beam is optically coupled to a sample arm for probing a sample to be imaged. Both the reference arm and the sample ami are disposed in the tube. A photodetector array (315) is preferably disposed inside the tube (301) optically coupled to the beam splitter (350). The photodetector array (315) receives a reflected beam from the MEMS reference micromirror (335) and a scattered beam from the sample to form an image of the sample.
Owner:UNIV OF FLORIDA RES FOUNDATION INC

Carbon nanofiber-dispersed resin fiber-reinforced composite material

The resin in a fiber-reinforced resin material that uses a single fiber reinforcing ply or a number of fiber reinforcing plies for reinforcing the resin material is reinforced by dispersing carbon nanofibers therein, whereby a fiber-reinforced composite resin material having improved strength such as compressive strength is provided. In a carbon nanofiber-dispersed resin fiber-reinforced composite material 1, an uncured resin 4 having carbon nanofibers 5 dispersed therein is impregnated into a number of fiber reinforcing plies 2a laid one upon another. Upon curing the resin 4, the strength of the matrix 3 itself is increased through the carbon nanofibers 5 dispersed in the resin 4. Moreover, the fiber reinforcement 2 and the resin 4 are joined together strongly by the carbon nanofibers 5, and hence the strength of the composite material, for example the compressive strength, which hitherto has been dependent on the strength of the resin 4 only, is improved.
Owner:JAPAN AEROSPACE EXPLORATION AGENCY +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Eureka Blog
Learn More
PatSnap group products