Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

10880results about "Magnetic measurements" patented technology

Digital wireless position sensor

A method is provided for tracking an object, including positioning a radio frequency (RF) driver to radiate an RF driving field toward the object, and fixing to the object a wireless transponder that includes a power coil and at least one sensor coil. The method also includes receiving the RF driving field using the power coil and storing electrical energy derived therefrom. A plurality of field generators are driven to generate electromagnetic fields at respective frequencies in a vicinity of the object that induce a voltage drop across the at least one sensor coil. A digital output signal is generated at the wireless transponder indicative of the voltage drop across the sensor coil, and the generation of the digital output signal is powered using the stored electrical energy. The digital output signal is transmitted from the wireless transponder using the power coil, and the transmission of the digital output signal is powered using the stored electrical energy. The digital output signal is received and processed to determine coordinates of the object.
Owner:BIOSENSE WEBSTER INC

MR-compatible devices

A catheter is used for medical treatments within an organism. The catheter comprises at least one lumen. Within the at least one lumen are at least two microcatheters, with at least one of the at least two microcatheters being connected to a source of liquid material to be delivered to the organism and another of the at least two microcatheters being connected to a system capable of effecting a medical treatment other than delivery of the liquid.
Owner:STANDFORD UNIV +2

Measuring position and orientation using magnetic fields

A method and apparatus for determining the position and orientation of a remote object relative to a reference coordinate frame includes a plurality of field-generating elements for generating electromagnetic fields, a drive for applying, to the generating elements, signals that generate a plurality of electromagnetic fields that are distinguishable from one another, a remote sensor having one or more field-sensing elements for sensing the fields generated and a processor for processing the outputs of the sensing element(s) into remote object position and orientation relative to the generating element reference coordinate frame. The position and orientation solution is based on the exact formulation of the magnetic field coupling as opposed to approximations used elsewhere. The system can be used for locating the end of a catheter or endoscope, digitizing objects for computer databases, virtual reality and motion tracking. The methods presented here can also be applied to other magnetic tracking technologies as a final "polishing" stage to improve the accuracy of their P&O solution.
Owner:CORMEDICA

Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization

A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The magnetic element includes pinned, nonmagnetic spacer, and free layers. The spacer layer resides between the pinned and free layers. The free layer can be switched using spin transfer when a write current is passed through the magnetic element. The magnetic element may also include a barrier layer, a second pinned layer. Alternatively, second pinned and second spacer layers and a second free layer magnetostatically coupled to the free layer are included. At least one free layer has a high perpendicular anisotropy. The high perpendicular anisotropy has a perpendicular anisotropy energy that is at least twenty and less than one hundred percent of the out-of-plane demagnetization energy.
Owner:SAMSUNG SEMICON

Perpendicular magnetization magnetic element utilizing spin transfer

A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The method and system include providing a first pinned layer, a barrier layer, a free layer, a conductive nonmagnetic spacer layer, and a second pinned layer. Each pinned layer has a pinned layer easy axis. At least a portion of the pinned layer easy axis is in a perpendicular direction. The barrier layer resides between the first pinned layer and the free layer. The spacer layer is between the free layer and the second pinned layer. The free layer has a free layer easy axis, at least a portion of which is in the perpendicular direction. The magnetic element is also configured to allow the free layer to be switched due to spin transfer effect when a write current is passed through the magnetic element. Because of the perpendicular magnetization(s), the writing current for spin transfer may be significantly reduced.
Owner:SAMSUNG SEMICON

Human environment life logging assistant virtual esemplastic network system and method

A user borne portable personal digital assistant, a brain activity sensing system, a surround sensing system, and correlation system are provided for video logging and memory enhancement. Signatures simultaneously input from the brain system and surround system representing the environment around the user at a given time and place are correlated into a historical relational database. Real-time query means for identifying correlations between the historical database and current internal and external signatures as the user moves through space and time are provided. Body integrated sensor, processing, and display devices are provided to accomplish statistically valid neural representations within the brain correlated to externally originated geo-spatial information and sensory representations surrounding the user. Methods and systems are disclosed for using the resultant data from the data logging system as input into a simulation, stimulation, search engine, social network, telecommunication, or emulation system within a biological, mechanical, and bio-mechanical system.
Owner:VIRTUAL VIDEO BY RITCHEY LLC

Mobile user borne brain activity data and surrounding environment data correlation system

A mobile user borne brain activity data and surrounding environment data correlation system comprising a brain activity sensing subsystem, a recording subsystem, a measurement computer subsystem, a user sensing subsystem, a surrounding environment sensing subsystem, a correlation subsystem, a user portable electronic device, a non-transitory computer readable medium, and a computer processing device. The mobile user borne system collects and records brain activity data and surrounding environment data and statistically correlates and processes the data for communicating the data into a recipient biological, mechanical, or bio-mechanical system.
Owner:VIRTUAL VIDEO BY RITCHEY LLC

Array system and method for locating an in vivo signal source

A system and method for localizing an in vivo signal source using a wearable antenna array having at least two antenna elements. The signal is received and a signal strength is measured at two or more antenna elements. An estimated coordinate set is derived from the signal strength measurements.
Owner:GIVEN IMAGING LTD

Magnetoresistive element

A magnetoresistive element which records information by supplying spin-polarized electrons to a magnetic material, includes a first pinned layer which is made of a magnetic material and has a first magnetization directed in a direction perpendicular to a film surface, a free layer which is made of a magnetic material and has a second magnetization directed in the direction perpendicular to the film surface, the direction of the second magnetization reversing by the spin-polarized electrons, and a first nonmagnetic layer which is provided between the first pinned layer and the free layer. A saturation magnetization Ms of the free layer satisfies a relationship 0≧Ms<√{square root over ( )}{Jw / (6nAt)}. Jw is a write current density, t is a thickness of the free layer, A is a constant.
Owner:KIOXIA CORP

MRI biopsy apparatus incorporating an imageable penetrating portion

An obturator as part of a biopsy system enhances use with Magnetic Resonance Imaging (MRI) by indicating location of a side aperture in an encompassing cannula. The cannula (e.g., detached probe, sleeve sized to receive a core biopsy probe) includes a side aperture for taking a tissue sample. When the obturator is inserted in lieu of the biopsy device into the cannula, a notch formed in a shaft of the obturator corresponds to the side aperture. A dugout trough into the notch may further accept aqueous material to further accentuate the side aperture. In addition, a series of dimensionally varied apertures (e.g., wells, slats) that communicate through a lateral surface of the shaft and that are proximal to the side aperture receive an aqueous material to accentuate visibility in an MRI image, even in a skewed MRI slice through the cannula / obturator.
Owner:DEVICOR MEDICAL PROD

Thin seeded Co/Ni multilayer film with perpendicular anisotropy for spintronic device applications

A spin valve structure for a spintronic device is disclosed and includes a composite seed layer made of at least Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (Co / Ni)x multilayer. The (Co / Ni)x multilayer is deposited by a low power and high Ar pressure process to avoid damaging Co / Ni interfaces and thereby preserving PMA. As a result, only a thin seed layer is required. PMA is maintained even after annealing at 220° C. for 10 hours. Examples of GMR and TMR spin valves are described and may be incorporated in spin transfer oscillators and spin transfer MRAMs. The free layer is preferably made of a FeCo alloy including at least one of Al, Ge, Si, Ga, B, C, Se, Sn, or a Heusler alloy, or a half Heusler alloy to provide high spin polarization and a low magnetic damping coefficient.
Owner:TDK CORPARATION +1

Apparatus and methods for imaging and attenuation correction

Imaging apparatus, is provided, comprising a first device, for obtaining a first image, by a first modality, selected from the group consisting of SPECT, PET, CT, an extracorporeal gamma scan, an extracorporeal beta scan, x-rays, an intracorporeal gamma scan, an intracorporeal beta scan, an intravascular gamma scan, an intravascular beta scan, and a combination thereof, and a second device, for obtaining a second, structural image, by a second modality, selected from the group consisting of a three-dimensional ultrasound, an MRI operative by an internal magnetic field, an extracorporeal ultrasound, an extracorporeal MRI operative by an external magnetic field, an intracorporeal ultrasound, an intracorporeal MRI operative by an external magnetic field, an intravascular ultrasound, and a combination thereof, and wherein the apparatus further includes a computerized system, configured to construct an attenuation map, for the first image, based on the second, structural image. Additionally, the computerized system is configured to display an attenuation-corrected first image as well as a superposition of the attenuation-corrected first image and the second, structural image. Furthermore, the apparatus is operative to guide an in-vivo instrument based on the superposition.
Owner:SPECTRUM DYNAMICS MEDICAL LTD

Apparatus and method for locating and marking an underground utility

An apparatus and method to locate and mark the surface position of an underground utility while maneuvering along the path of the utility. The apparatus uses an underground utility detector that responds to the location of an underground utility to continually position a carriage proximate vertical of the utility. Marker systems are aligned with the carriage and apply either a unique paint symbol on pavement or a spike in the ground. The apparatus is configured to use an underground utility detector or positioning equipment that generate positional signals. The apparatus may be configured to mark utility positions at predetermined intervals and mark utility offset positions. The apparatus may be attached to a vehicle, towed by a vehicle, motorized or propelled by a person.
Owner:TRI SITE

MRI surgical systems for real-time visualizations using MRI image data and predefined data of surgical tools

MRI-Surgical systems include: (a) at least one MRI-compatible surgical tool; (b) a circuit adapted to communicate with an MRI scanner; and (c) at least one display in communication with the circuit. The circuit electronically recognizes predefined physical characteristics of the at least one tool to automatically segment MR image data provided by the MRI scanner whereby the at least one tool constitutes a point of interface with the system. The circuit is configured to provide a User Interface that defines workflow progression for an MRI-guided surgical procedure and allows a user to select steps in the workflow, and wherein the circuit is configured to generate multi-dimensional visualizations using the predefined data of the at least one tool and data from MRI images of the patient in substantially real time during the surgical procedure.
Owner:CLEARPOINT NEURO INC

Circuits and Methods for Generating a Self-Test of a Magnetic Field Sensor

A magnetic field sensor includes built in self-test circuits that allow a self-test of most of, or all of, the circuitry of the magnetic field sensor, including self-test of a magnetic field sensing element used within the magnetic field sensor, while the magnetic field sensor is functioning in normal operation.
Owner:ALLEGRO MICROSYSTEMS INC

Method and Apparatus for Providing a Wireless Multiple-Frequency MR Coil

Embodiments of the invention pertain to a method and apparatus for magnetic resonance imaging and spectroscopy (MRI / S). In a specific embodiment, the method and apparatus for MRI / S can be applied at two or more resonant frequencies utilizing a wireless RF receiving coil. In an embodiment, the wireless coil, which can be referred to as the implant coil, can be incorporated into an implantable structure. The implantable structure can then be implanted in a living body. The wireless RF receiving coil can be inductively coupled to another RF coil, which can be referred to as an external coil, for receiving the signal from the wireless implant RF coil. In an embodiment, the implantable structure can be a capsule compatible with implantation in a living body. The implantable structure can incorporate a mechanism for adjusting the impedance of the implant coil so as to alter the resonance frequency of the implant coil. In a specific embodiment, the mechanism for adjusting the impedance of the implant coil can allow the implant coil to receive at least two resonance frequencies. In an embodiment, the implant coil can receive three resonance frequencies and in a further embodiment, the implant coil can receive any number resonance frequencies. These resonance frequencies can be controlled by adjusting the impedance of the implant coil. In an embodiment, the resonance frequencies of the implant coil are selected to correlate to MRI / S signals received from living tissues.
Owner:UNIV OF FLORIDA RES FOUNDATION INC

High field magnetic resonance

A magnetic resonance system is disclosed. The system includes a transceiver having a multichannel receiver and a multichannel transmitter, where each channel of the transmitter is configured for independent selection of frequency, phase, time, space, and magnitude, and each channel of the receiver is configured for independent selection of space, time, frequency, phase and gain. The system also includes a magnetic resonance coil having a plurality of current elements, with each element coupled in one to one relation with a channel of the receiver and a channel of the transmitter. The system further includes a processor coupled to the transceiver, such that the processor is configured to execute instructions to control a current in each element and to perform a non-linear algorithm to shim the coil.
Owner:RGT UNIV OF MINNESOTA

Combination MRI and Radiotherapy Systems and Methods of Use

A combination MRI and radiotherapy system comprising: a) an MRI system for imaging a patient receiving radiotherapy, comprising a magnetic field source suitable for generating a magnetic field of strength and uniformity useable for imaging, capable of being ramped up to said magnetic field in less than 10 minutes, and ramped down from said magnetic field in less than 10 minutes; b) a radiation source configured for applying radiotherapy; and c) a controller which ramps the magnetic field source down to less than 20% of said magnetic field strength when the radiation source is to be used for radiotherapy, and ramps the magnetic field source up to said magnetic field strength when the MRI system is to be used for imaging.
Owner:NAVOTEK MEDICAL

Resonator system

A resonator system for generating a radio frequency (RF) magnetic field in a volume under investigation of a magnetic resonance (MR) arrangement, comprises a number N of individual resonators (2) which surround the volume under investigation and which are each disposed on a flat dielectric substrate (1) around a z-axis, wherein the individual resonators (2) have windows (8) through each of which one individual RF field is generated in the volume under investigation in single operation of the individual resonators (2) and, through cooperation among the individual resonators (2), a useful RF field (7) is generated in the volume under investigation, wherein a remote RF field (6) is asymptotically generated far outside of the resonator system, and the spatial distribution of the useful RF field (7) is substantially mirror-symmetrical relative to a first plane A which contains the z-axis, and that of the asymptotic remote RF field (6) is substantially mirror-symmetrical relative to a second plane B which contains the z-axis, the useful RF field (7) extending substantially parallel to the first plane A in the volume under investigation, wherein the number of individual resonators (2) is N>4 and wherein, during operation of the resonator system at at least one point in time, the substrate plane of at least one individual resonator (2) subtends an angle of more than 40° with respect to the direction of the useful RF field (7) in the volume under investigation, and at least one further individual resonator (2) subtends an angle of less than 40° with respect to the direction of the useful RF field (7) in the volume under investigation, is characterized in that the first plane A is not rotated about the z-axis relative to the second plane B or is rotated by less than 360° / (N+1). The inventive resonator system realizes a resonator system with improved field homogeneity and full quadrature suitability, high quality factor and large efficiency using straightforward constructional measures.
Owner:BRUKER SWITZERLAND AG

Mri-guided localization and/or lead placement systems, related methods, devices and computer program products

MRI compatible localization and / or guidance systems for facilitating placement of an interventional therapy and / or device in vivo include: (a) a mount adapted for fixation to a patient; (b) a targeting cannula with a lumen configured to attach to the mount so as to be able to controllably translate in at least three dimensions; and (c) an elongate probe configured to snugly slidably advance and retract in the targeting cannula lumen, the elongate probe comprising at least one of a stimulation or recording electrode. In operation, the targeting cannula can be aligned with a first trajectory and positionally adjusted to provide a desired internal access path to a target location with a corresponding trajectory for the elongate probe. Automated systems for determining an MR scan plane associated with a trajectory and for determining mount adjustments are also described.
Owner:CLEARPOINT NEURO INC

Magnetoresistive element having reduced spin transfer induced noise

InactiveUS20050041342A1Increased magnetic damping constantNanomagnetismMagnetic measurementsMagnetic reluctanceSpin transfer
A method and system for providing a magnetic element is disclosed. The method and system include providing a ferromagnetic pinned layer, providing a free layer, and providing a spacer layer between the pinned layer and the free layer. The pinned layer and free layer are ferromagnetic and have a pinned layer magnetization and a free layer magnetization, respectively. The spacer layer is nonmagnetic. In one aspect, the free layer is configured to have an increased magnetic damping constant. In another aspect, the method and system also include providing a second pinned layer and a second spacer layer between the free layer and the second pinned layer. In this aspect, the first pinned layer and / or the second pinned layer are configured such that a forward torque and a reflected torque due to a current driven through the magnetic element in a current-perpendicular-to-plane configuration are substantially equal and opposite.
Owner:SAMSUNG SEMICON

Motion compensated image-guided focused ultrasound therapy system

An image-guide therapy system comprises a thermal treatment device (e.g., an ultrasound transducer) configured for transmitting a therapeutic energy beam, and The system further comprises an imaging device (e.g., a magnetic resonant imaging (MRI) device) configured for acquiring images of the target tissue mass and the thermal treatment device. The system further comprises a controller configured for controlling thermal dose properties of the thermal treatment device to focus the energy beam on a target tissue mass located in an internal body region of a patient, and a processor configured for tracking respective positions of the thermal treatment device and the target tissue mass in a common coordinate system based on the acquired images. The system may optionally comprise a display configured for displaying the acquired images.
Owner:INSIGHTEC

Method and system for providing a magnetoresistive structure

A method and system for providing a magnetoresistive structure are described. The magnetoresistive structure includes a first electrode, an insertion layer, a crystalline tunneling barrier layer, and a second electrode. The first electrode includes at least a first magnetic material and boron. The crystalline tunneling barrier layer includes at least one constituent. The insertion layer has a first boron affinity. The at least one constituent of the crystalline tunneling barrier layer has at least a second boron affinity that is less than the first boron affinity. The second electrode includes at least a second magnetic material.
Owner:WESTERN DIGITAL TECH INC

Method and system for providing a read sensor having a low magnetostriction free layer

A method and system for providing a magnetic structure in magnetic transducer is described. The magnetic structure includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The free layer includes a first magnetic layer, a second magnetic layer, and a magnetic insertion layer between the first magnetic layer and the second magnetic layer. The first magnetic layer has a first magnetostriction. The second magnetic layer has a second magnetostriction opposite to the first magnetostriction. The magnetic insertion layer provides a growth texture barrier between the first magnetic layer and the second magnetic layer.
Owner:WESTERN DIGITAL TECH INC

Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements

A method and system for providing a magnetic element and a magnetic memory utilizing the magnetic element are described. The magnetic element is used in a magnetic device that includes a contact electrically coupled to the magnetic element. The method and system include providing pinned, nonmagnetic spacer, and free layers. The free layer has an out-of-plane demagnetization energy and a perpendicular magnetic anisotropy corresponding to a perpendicular anisotropy energy that is less than the out-of-plane demagnetization energy. The nonmagnetic spacer layer is between the pinned and free layers. The method and system also include providing a perpendicular capping layer adjoining the free layer and the contact. The perpendicular capping layer induces at least part of the perpendicular magnetic anisotropy in the free layer. The magnetic element is configured to allow the free layer to be switched between magnetic states when a write current is passed through the magnetic element.
Owner:SAMSUNG SEMICON

Digital wireless position sensor

A method is provided for tracking an object, including positioning a radio frequency (RF) driver to radiate an RF driving field toward the object, and fixing to the object a wireless transponder that includes a power coil and at least one sensor coil. The method also includes receiving the RF driving field using the power coil and storing electrical energy derived therefrom. A plurality of field generators are driven to generate electromagnetic fields at respective frequencies in a vicinity of the object that induce a voltage drop across the at least one sensor coil. A digital output signal is generated at the wireless transponder indicative of the voltage drop across the sensor coil, and the generation of the digital output signal is powered using the stored electrical energy. The digital output signal is transmitted from the wireless transponder using the power coil, and the transmission of the digital output signal is powered using the stored electrical energy. The digital output signal is received and processed to determine coordinates of the object.
Owner:BIOSENSE WEBSTER INC

MTJ incorporating CoFe/Ni multilayer film with perpendicular magnetic anisotropy for MRAM application

ActiveUS20110096443A1Minimize impinging ion energyMaximize PMA propertyMagnetic measurementsVacuum evaporation coatingSpin transferSpin valve
A MTJ for a spintronic device is disclosed and includes a thin composite seed layer made of at least Ta and a metal layer having fcc(111) or hcp(001) texture as in Ta / Ti / Cu to enhance perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (CoFe / Ni)X, (Co / NiFe)X, (Co / NiCo)X, (CoFe / NiFe)X, or (CoFe / NiCo)X composition where x is from 5 to 30. In one embodiment, a CPP-TMR spin valve has one or both of a laminated free layer and laminated reference layer with the aforementioned compositions. The MTJ includes an interfacial layer made of CoFeB, CoFeB / CoFe, or CoFe / CoFeB between each laminated structure and the tunnel barrier. The laminated layers are deposited by a low power and high Ar pressure process to avoid damaging interfaces between adjoining layers. Annealing occurs at 220° C. to 400° C. A laminated layer with high PMA may also be included in one or more layers of a spin transfer oscillator.
Owner:TAIWAN SEMICON MFG CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products