Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

445 results about "Perpendicular magnetic anisotropy" patented technology

Abstract Perpendicular magnetic anisotropy (PMA) is an essential condition for CoFe thin films used in magnetic random access memories. Until recently, interfacial PMA was mainly known to occur in materials stacks with MgO\CoFe(B) interfaces or using an adjacent crystalline heavy metal film.

Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements

A method and system for providing a magnetic element and a magnetic memory utilizing the magnetic element are described. The magnetic element is used in a magnetic device that includes a contact electrically coupled to the magnetic element. The method and system include providing pinned, nonmagnetic spacer, and free layers. The free layer has an out-of-plane demagnetization energy and a perpendicular magnetic anisotropy corresponding to a perpendicular anisotropy energy that is less than the out-of-plane demagnetization energy. The nonmagnetic spacer layer is between the pinned and free layers. The method and system also include providing a perpendicular capping layer adjoining the free layer and the contact. The perpendicular capping layer induces at least part of the perpendicular magnetic anisotropy in the free layer. The magnetic element is configured to allow the free layer to be switched between magnetic states when a write current is passed through the magnetic element.
Owner:SAMSUNG SEMICON

Co/Ni Multilayers with Improved Out-of-Plane Anisotropy for Magnetic Device Applications

A MTJ for a spintronic device is disclosed and includes a thin seed layer that enhances perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (Co / X)n or (CoX)n composition where n is from 2 to 30, X is one of V, Rh, Ir, Os, Ru, Au, Cr, Mo, Cu, Ti, Re, Mg, or Si, and CoX is a disordered alloy. A CoFeB layer may be formed between the laminated layer and a tunnel barrier layer to serve as a transitional layer between a (111) laminate and (100) MgO tunnel barrier. The laminated layer may be used as a reference layer, dipole layer, or free layer in a MTJ. Annealing between 300° C. and 400° C. may be used to further enhance PMA in the laminated layer.
Owner:TAIWAN SEMICON MFG CO LTD

Perpendicular magnetic recording disk and method of manufacturing the same

[Object] To achieve a high coercive force (Hc) and low-noise characteristics (high S / N ratio) through realization of both segregation of SiO2 and high perpendicular magnetic anisotropy by providing a two-layer structure having magnetic recording layers with different properties.[Solution] A magnetic disk for use in perpendicular magnetic recording, having at least an underlayer 5, a first magnetic recording layer 6, and a second magnetic recording layer 7 on a substrate in this order. The first magnetic recording layer 6 and the second magnetic recording layer 7 are each a ferromagnetic layer of a granular structure containing a nonmagnetic substance forming grain boundary portions between crystal grains containing at least Co (cobalt). Given that the content of the nonmagnetic substance in the first magnetic recording layer 6 is A mol % and the content of the nonmagnetic substance in the second magnetic recording layer 7 is B mol %, A>B.
Owner:WD MEDIA SINGAPORE PTE

Spin-orbit torque magnetic random access memory (SOT-MRAM) without external magnetic field

Disclosed is a spin-orbit torque magnetic random access memory (SOT-MRAM) without an external magnetic field. The spin-orbit torque magnetic tunneling junction(SOT-MTJ) of the random access memory is based on perpendicular magnetic anisotropy, apart from comprising an anti-parallel layer, a tunneling barrier layer, a reference layer and an antiferromagnetc metal layer in a conventional MTJ structure, is also additionally provided with a nonferromagnetic metal layer, optimizes the material of the antiferromagnetc metal layer and improves the shape of the tunneling barrier layer; and the SOT-MTJ structure is successively provided with seven layers which are respectively a bottom electrode, the nonferromagnetic metal layer, a first ferromagnetic metal layer, i.e., the anti-parallel layer, a wedge tunneling barrier layer, a second ferromagnetic metal layer, i.e., the reference layer, the antiferromagnetc metal layer and a top electrode from the bottom to the top. According to the invention, writing operation can be carried out without the external magnetic field. Compared to a conventional SOT-MRAM, the energy consumption is smaller, and the geometric ratio micro-shrink performance reduced along with a technical node is more excellent.
Owner:致真存储(北京)科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products