Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

17843 results about "Magnetism" patented technology

Magnetism is a class of physical phenomena that are mediated by magnetic fields. Electric currents and the magnetic moments of elementary particles give rise to a magnetic field, which acts on other currents and magnetic moments. The most familiar effects occur in ferromagnetic materials, which are strongly attracted by magnetic fields and can be magnetized to become permanent magnets, producing magnetic fields themselves. Only a few substances are ferromagnetic; the most common ones are iron, cobalt and nickel and their alloys. The prefix ferro- refers to iron, because permanent magnetism was first observed in lodestone, a form of natural iron ore called magnetite, Fe₃O₄.

Magnetic field permeable barrier for magnetic position measurement system

A magnetic field position and orientation measurement system contains, confines and re-directs the magnetic field from one or more transmitters such that the fields are attenuated in areas outside of the operating volume in areas where metallic objects are commonly found. A thin barrier made of a highly permeable material such as ferrite or mumetal is placed on top of a conductive plate. The thickness of the permeable layer is from 0.01 inches to 0.25 inches while the conductive plate, preferably made of an aluminum alloy, may preferably be from {fraction (3/16)} of an inch to ¼ inch in thickness. On top of the permeable barrier, a rhombic three axis transmitter is placed. In the preferred embodiment, the transmitter consists of a PC board carrying the transmitter. PC boards having thicknesses varying from 0.03125-0.125 inches may be employed. Thus, the entire "stack" including the transmitter, the permeable barrier and the conductive plate may only be from ½ inch to ⅝ of an inch in thickness. The permeable barrier may have a flat, planar configuration. Alternatively, it may be made to resemble, in cross-section, a cake pan having a flat central region with uplifted peripheral edges. Alternatively, the permeable barrier may have a generally flat configuration with peripheral edges that taper outwardly from the top surface thereof to the bottom surface thereof with the taper making an angle with the bottom surface in the range of, preferably, 30° to 85°.
Owner:ASCENSION TECH

Magnetic data recording device

A Q-Chip MEMS magnetic device comprises a thin-film electronic circuit for implantation in the Track-2 area of a magnetic stripe on the back of a credit card. The Q-Chip MEMS magnetic device periodically self-generates new sub-sets of magnetic data that are to be read in combination with other magnetic data that is permanently recorded in the surrounding surface of the magnetic stripe. A collocated battery and microcontroller provide operating power and new data for magnetic bit updates. A swipe sensor triggers such updates by sensing electrical contact with a legacy card reader. Several thin-film coils of wire are wound end-to-end around a common, flat, ferrous core. These are driven by the microcontroller. In one instance, such core comprises “hard” magnetic material with a coercivity of 200-300 Oersteds. Magnetic data written from the corresponding adjacent coils will persist for later readings by a legacy card reader. In another instance, the core comprises “soft” magnetic material with a coercivity of about one Oersted. A media stripe of “hard” magnetic film material overlays respective coils to receive magnetic data transfers. Magnetic data written from the corresponding adjacent coils will persist in the overlaying hard media for later readings by a legacy card reader. In a data input mode, the thin-film coils can be used as readers to provide updates and new programming to the microcontroller.
Owner:FITBIT INC

Analytic methods of tissue evaluation

The present invention generally relates to methods and systems for (i) skin assessment based on the utilization of bioimpedance and fractional calculus and implementation of methods for skin hydration assessment based on the utilization of bioimpedance and fractional calculus and systems thereof, (ii) an Opto-Magnetic method based on RGB and gray images data as “cone-rods” principles with enhanced qualitative and quantitative parameters for analyzing water based on Opto-Magnetic properties of light-matter interaction and systems thereof, and (iii) imaging and analyzing skin based on the interaction between matter and electromagnetic radiation and implementation of an Opto-Magnetic method with enhanced qualitative and quantitative parameters for imaging and analyzing skin based on Opto-Magnetic properties of light-matter interaction and systems thereof.
Owner:MYSKIN

High speed low power magnetic devices based on current induced spin-momentum transfer

The present invention generally relates to the field of magnetic devices for memory cells that can serve as non-volatile memory. More specifically, the present invention describes a high speed and low power method by which a spin polarized electrical current can be used to control and switch the magnetization direction of a magnetic region in such a device. The magnetic device comprises a pinned magnetic layer with a fixed magnetization direction, a free magnetic layer with a free magnetization direction, and a read-out magnetic layer with a fixed magnetization direction. The pinned magnetic layer and the free magnetic layer are separated by a non-magnetic layer, and the free magnetic layer and the read-out magnetic layer are separated by another non-magnetic layer. The magnetization directions of the pinned and free layers generally do not point along the same axis. The non-magnetic layers minimize the magnetic interaction between the magnetic layers. A current is applied to the device to induce a torque that alters the magnetic state of the device so that it can act as a magnetic memory for writing information. The resistance, which depends on the magnetic state of the device, is measured to thereby read out the information stored in the device.
Owner:NEW YORK UNIV

Magnetic element with improved out-of-plane anisotropy for spintronic applications

ActiveUS20120205758A1Without degrading thermal stability and MR ratioEnhanced interfacial perpendicular anisotropyMagnetic-field-controlled resistorsGalvano-magnetic material selectionPerpendicular anisotropyAlloy
A magnetic element is disclosed wherein first and second interfaces of a free layer with a Hk enhancing layer and tunnel barrier, respectively, produce enhanced surface perpendicular anisotropy to lower switching current or increase thermal stability in a magnetic tunnel junction (MTJ). In a MTJ with a bottom spin valve configuration where the Hk enhancing layer is an oxide, the capping layer contacting the Hk enhancing layer is selected to have a free energy of oxide formation substantially greater than that of the oxide. The free layer may be a single layer or composite comprised of an Fe rich alloy such as Co20Fe60B20. With a thin free layer, the interfacial perpendicular anisotropy may dominate the shape anisotropy to generate a magnetization perpendicular to the planes of the layers. The magnetic element may be part of a spintronic device or serve as a propagation medium in a domain wall motion device.
Owner:TAIWAN SEMICON MFG CO LTD

Magnetic levitation stirring devices and machines for mixing in vessels

The invention provides a simple method, devices and several machines for simultaneously stirring and aerating thousands of vessels or wells of microplates in a robust manner and with economy. This method uses the simple principle of magnetic stirrers being levitated vertically when passed laterally or vertically through a strong horizontal dipole magnetic field. The dipole magnetic fields may be produced by using permanent magnets, electromagnets or a modulating/reversing electro-magnetic field. Each vessel contains a magnetic ball, disc, bar, dowel or other shape (stirrers) which in their magnetic attraction to the dipole magnetic field will cause the stirrers to levitate up in the vessel as the stirrer's magnetic poles attempt to align with the center of the dipole's magnetic field. The stirrers will fall to the bottom of the vessel by gravity or by changing the relative position of the levitating magnetic field to pull them down, or by passing the vessel laterally over another magnetic field. The up and down movement of the stirrers provides a vigorous mixing of the contents of many vessels at same time. If the level of the vessel's meniscus is situated so the stirrers pass through it on their way up and down, the air/liquid interface is significantly increased thereby significantly increasing aeration of the liquid.
Owner:V & P SCI

Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements

A method and system for providing a magnetic element and a magnetic memory utilizing the magnetic element are described. The magnetic element is used in a magnetic device that includes a contact electrically coupled to the magnetic element. The method and system include providing pinned, nonmagnetic spacer, and free layers. The free layer has an out-of-plane demagnetization energy and a perpendicular magnetic anisotropy corresponding to a perpendicular anisotropy energy that is less than the out-of-plane demagnetization energy. The nonmagnetic spacer layer is between the pinned and free layers. The method and system also include providing a perpendicular capping layer adjoining the free layer and the contact. The perpendicular capping layer induces at least part of the perpendicular magnetic anisotropy in the free layer. The magnetic element is configured to allow the free layer to be switched between magnetic states when a write current is passed through the magnetic element.
Owner:SAMSUNG SEMICON

Magnetic recording head with high saturation magnetic flux density CoNiFe thin film composition

A method and system for plating CoNiFe is disclosed. The method and system include providing a plating solution including hydroxymethyl-p-tolylsulfone and plating the CoNiFe film on a substrate in the plating solution. The plating solution is configured to provide a CoNiFe film having a high saturation magnetic flux density and having a composition of 50-70 weight percent of Fe and 3-8 weight percent of Ni. In another aspect, the method and system include plating at least a portion of a first and / or second pole of a write head using the plating solution including hydroxymethyl-p-tolylsulfone and configured to plate the CoNiFe film having a high saturation magnetic flux density and a composition of 50-70 weight percent of Fe and 3-8 weight percent of Ni.
Owner:WESTERN DIGITAL TECH INC

Magnetic recording medium

ActiveUS20120045664A1Superior recording/reproducing characteristicSuperior characteristic transportMaterials with ironRecord information storageNon magneticHexane
A magnetic recording medium of the present invention is a magnetic recording medium including a non-magnetic substrate; a non-magnetic layer that is formed on one of principal surfaces of the non-magnetic substrate and contains a non-magnetic powder, a binder, and a lubricant; and a magnetic layer that is formed on a principal surface of the non-magnetic layer opposite to the non-magnetic substrate and contains a magnetic powder and a binder. The magnetic powder has an average particle size between 10 inn and 35 nm inclusive. The lubricant is migratable to the magnetic layer and forms a lubricant layer on a surface of the magnetic layer when a pressure is applied to the magnetic layer. When spacing of the surface of the magnetic layer before and after washing the lubricant with n-hexane is measured with a TSA (Tape Spacing Analyzer), the value of the spacing after washing is 3 to 10 nm, and the value of the spacing before washing is 1 to 5 nm smaller than the value of the spacing after washing.
Owner:FUJIFILM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products