Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

640 results about "Magnetic dipole" patented technology

A magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the size of the source is reduced to zero while keeping the magnetic moment constant. It is a magnetic analogue of the electric dipole, but the analogy is not perfect. In particular, a magnetic monopole, the magnetic analogue of an electric charge, has never been observed. Moreover, one form of magnetic dipole moment is associated with a fundamental quantum property—the spin of elementary particles.

Method and apparatus for generating controlled torques on objects particularly objects inside a living body

A method and apparatus for generating a controlled torque of a desired direction and magnitude in an object within a body, particularly in order to steer the object through the body, such as a catheter through a blood vessel in a living body, by producing an external magnetic field of known magnitude and direction within the body, applying to the object a coil assembly including preferably three coils of known orientation with respect to each other, preferably orthogonal to each other, and controlling the electrical current through the coils to cause the coil assembly to generate a resultant magnetic dipole interacting with the external magnetic field to produce a torque of the desired direction and magnitude.
Owner:ROBIN MEDICAL

Determining electrical conductivity of a laminated earth formation using induction logging

A method is provided for determining an electric conductivity of an earth formation formed of different earth layers, which earth formation is penetrated by a wellbore containing a wellbore fluid, is provided. The method includes the steps of: lowering an induction logging tool into the wellbore to a location surrounded by a selected one of the earth layers, the tool having a magnetic field transmitter effective to induce magnetic fields of different frequencies in the earth formation, and a magnetic field receiver effective to receive response magnetic fields and to provide a signal representative of each response magnetic field, at least one of the transmitter and the receiver having a plurality of magnetic dipole moments in mutually orthogonal directions. At least two of the different frequencies are selected, and for each selected frequency, the transmitter is operated so as to induce a magnetic field in the earth formation and the receiver is operated so as to provide a signal representing a response magnetic field, wherein the at least one of the transmitter and receiver is operated in the mutually orthogonal directions. The signals are combined in a manner so as to create a combined signal having a reduced dependency on the electric conductivity in the wellbore region. The formation resistivity and the relative orientation of the logging tool with respect to the formation layering is determined from the combined signal.
Owner:SHELL OIL CO

High-frequency oscillation element, magnetic information recording head, and magnetic storage device

A high-frequency oscillation element has a ferromagnetic material which exhibits thermal fluctuation of magnetization and generates spin fluctuations in conduction electrons, a nonmagnetic conductive material which is laminated on the first magnetic material and transfers the conduction electrons, a magnetic material which is laminated on the nonmagnetic conductive material, generates magnetic resonance upon injection of the conduction electrons, and imparts magnetic dipole interaction to magnetization of a neighboring magnetic area by means of magnetic vibration stemming from the magnetic resonance, a first electrode electrically coupled with the first magnetic material, and a second electrode electrically coupled with the second magnetic material.
Owner:KK TOSHIBA

Operating table with embedded tracking technology

A system and method for embedding tracking technology in a medical table is disclosed. A plurality of table sensors is attached to a medical table to form an array. An instrument sensor is attached to an instrument. At least one of the table sensors and the instrument sensor generates at least one magnetic dipole field. The instrument sensor is moved relative to the array while at least one of the table sensors and the instrument sensor measures at least one vector component of the field. The measured vector component(s) are communicated to tracker electronics that determine at least one of a position and orientation of the instrument sensor relative to the array.
Owner:GENERAL ELECTRIC CO

Array Antenna for Measurement-While-Drilling

An electromagnetic antenna for Measurement-While-Drilling (MWD) applications is disclosed. The antenna can include several array elements that can act alone or together in various measurement modes. The antenna elements can be disposed in tool body recesses to be protected from damage. The antenna elements can include a ferrite plate crossed or looped by independent current carrying conductors in two or more directions forming a bi-directional or crossed magnetic dipole. Although disclosed as a MWD system conveyed by a drill string, basic concepts of the system are applicable to other types of borehole conveyance.
Owner:WEATHERFORD TECH HLDG LLC

System and method using magnetic anomaly field magnitudes for detection, localization, classification and tracking of magnetic objects

A magnetic anomaly sensing system and method uses at least four triaxial magnetometer (TM) sensors with each of the TM sensors having X,Y,Z magnetic sensing axes. The TM sensors are arranged in a three-dimensional array with respective ones of the X,Y,Z magnetic sensing axes being mutually parallel to one another. The three-dimensional array defines a geometry that forms at least one single-axis gradiometer along each of the X,Y,Z magnetic sensing axes. Information sensed by the TM sensors is to generate scalar magnitudes of a magnetic anomaly field measured at each of the TM sensors, comparisons of the scalar magnitudes to at least one threshold value, distance to a source of the magnetic anomaly field using the scalar magnitudes when the threshold value(s) is exceeded, and a magnetic dipole moment of the source using the distance.
Owner:USA AS REPRESENTED BY THE SEC OF THE NAVY THE

Multi-component electromagnetic prospecting apparatus and method of use thereof

Systems and methods are provided for the detection of conductive bodies using three-component electric or magnetic dipole transmitters. The fields from multiple transmitters can be combined to enhance fields at specific locations and in specific orientation. A one- two- or three-component receiver or receiver array is provided for detecting the secondary field radiated by a conductive body. The data from multiple receivers can be combined to enhance the response at a specific sensing location with a specific orientation. Another method is provided in which a three-component transmitter and receiver are separated by an arbitrary distance, and where the position and orientation of the receiver relative to the transmitter are calculated, allowing the response of a highly conductive body to be detected.
Owner:LAURENTIAN UNIV OF SUDBURY

Method and apparatus for cancellation of borehole effects due to a tilted or transverse magnetic dipole

Methods and apparatus are disclosed for minimizing or eliminating an undesired axial electric current induced along a subsurface borehole in the process of subsurface measurements with transmitter and / or receiver antennas which are substantially time varying magnetic dipoles with their dipole moments aligned at an angle to the axis of the borehole. Some antennas are disposed within the borehole on instruments having a non-conductive support member. One instrument includes a conductive all-metal body with an antenna adapted for induction frequencies. Antenna shields adapted for controlled current flow are also provided with an all-metal instrument. Methods include providing an alternate path for the current along the instrument body. Another method includes emitting a controlled current to counter the undesired current. Another method corrects for the effect of the current using a superposition technique. An embodiment of the instrument includes an antenna disposed between a pair of electrically coupled electrodes. The antenna is disposed on the instrument such that it comprises a tilted or transverse magnetic dipole. Another embodiment of the instrument includes a non-conductive housing with a conductive segment disposed thereon. An antenna is disposed on the instrument about the conductive segment. Another embodiment includes an antenna disposed between two pairs of electrodes with means to measure a voltage at the electrodes when electromagnetic energy is transmitted within the borehole. Yet another instrument includes an antenna disposed between a first pair of electrodes and means to measure a voltage at the electrodes when electromagnetic energy is transmitted within the borehole. This embodiment also includes means to energize a second electrode pair in response to the voltage measured at the first electrode pair.
Owner:SCHLUMBERGER TECH CORP

PxM antenna with improved radiation characteristics over a broad frequency range

A low-loss, high-efficiency, broadband antenna including both electric and magnetic dipole radiators is provided herein. The broadband antenna may be referred to as a “P×M antenna” and may generally include a ground plane; a magnetic radiator formed within the ground plane; a conductive feed arranged within a first plane, which is parallel to the ground plane; and an electric radiator arranged within a second plane, which is perpendicular to the ground plane and coupled at one end to the conductive feed. According to a particular aspect of the invention, the electric and magnetic radiators are substantially complementary to one another and are coupled for producing a P×M radiation pattern over a broad range of operating frequencies. One advantage of the P×M antenna described herein is that the complementary antenna elements are combined without the use of a lossy, resistive matching network, thereby increasing the efficiency with which the P×M radiation pattern is produced.
Owner:TDK CORPARATION

Method of producing individual plasmas in order to create a uniform plasma for a work surface, and apparatus for producing such a plasma

The invention provides apparatus having a series of individual plasma excitation devices each constituted by a wire applicator of microwave energy, having one end connected to a source for producing microwave energy and having an opposite end fitted with at least one magnetic dipole for creating at least one surface having a magnetic field that is constant and of intensity corresponding to electron cyclotron resonance, the dipole being mounted at the end of the microwave applicator in such a manner as to ensure that electrons accelerated to electron cyclotron resonance oscillate between the poles so as to create a plasma diffusion zone situated on the side of the dipole that is remote from the end of the applicator, the individual excitation devices being distributed relative to one another and in proximity with the work surface so as to create together a plasma that is uniform for the work surface.
Owner:H E F

MRI-Safe Disc Magnet for Implants

A magnetic arrangement is described for an implantable system for a recipient patient. A planar coil housing contains a signal coil for transcutaneous communication of an implant communication signal. A first attachment magnet is located within the plane of the coil housing and rotatable therein, and has a magnetic dipole parallel to the plane of the coil housing for transcutaneous magnetic interaction with a corresponding second attachment magnet.
Owner:MED EL ELEKTROMEDIZINISCHE GERAETE GMBH

Electron optical apparatus, x-ray emitting device and method of producing an electron beam

It is described an electron optical arrangement, a X-ray emitting device and a method of creating an electron beam. An electron optical apparatus (1) comprises the following components along an optical axis (25): a cathode with an emitter (3) having a substantially planar surface (9) for emitting electrons; an anode (11) for accelerating the emitted electrons in a direction essentially along the optical axis (25); a first magnetic quadrupole lens (19) for deflecting the accelerated electrons and having a first yoke (41); a second magnetic quadrupole lens (21) for further deflecting the accelerated electrons and having a second yoke (51); and a magnetic dipole lens (23) for further deflecting the accelerated electrons.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Propagation based electromagnetic measurement of anisotropy using transverse or tilted magnetic dipoles

Transverse or tilted magnetic dipole antenna systems are used for electromagnetic logging measurements to determine the anisotropic resistivity of subsurface formations. Combined measurements between transverse or tilted antennas, as well as axial antennas, are used to compensate for receiver antenna mismatch in the system. Some embodiments use model-based parametric inversion to estimate the anisotropic resistivity in the presence of invasion and shoulder-bed effects.
Owner:SCHLUMBERGER TECH CORP

Constructing co-located antennas by winding a wire through an opening in the support

Techniques for implementing antenna configurations with substantially co-located axes are disclosed. A method for constructing co-located antennas includes winding a first antenna on a support, the first antenna having a first magnetic dipole in a first orientation; and winding a second antenna on the support through a first set of openings in the support, the second antenna having a second magnetic dipole in a second orientation, wherein the first orientation is different from the second orientation, and wherein a center of the first magnetic dipole substantially co-locates with a center of the second magnetic dipole.
Owner:SCHLUMBERGER TECH CORP

Antenna with multiple coupled regions

An antenna having a driven element coupled to multiple additional elements to resonate at multiple frequencies. A magnetic dipole mode is generated by coupling a driven element to a second element, and additional resonances are generated by coupling additional elements to either or both of the driven or second element. One or multiple active components can be coupled to one or more of the coupled elements to provide dynamic tuning of the coupled or driven elements.
Owner:HENG CHEW CHWEE +3

Modal antenna-integrated battery assembly

A modal antenna is formed within a battery assembly for use with a portable electronic device. In certain embodiments, the antenna is printed on an exterior surface of a battery enclosure using a conductive ink. In other embodiments, the antenna is attached, or etched, on a substrate; the substrate may at least partially include a battery housing. The antenna can include an Isolated Magnetic Dipole (IMD) antenna, or other radiating structure. Active components, such as active tuning components, are optionally included in the antenna-integrated battery assembly for the purpose of tuning the antenna.
Owner:KYOCERA AVX COMPONENTS (SAN DIEGO) INC

Magnetic anomaly sensing system for detection, localization and classification of magnetic objects

A magnetic anomaly sensing system uses triaxial magnetometer (TM) sensors arranged in a three-dimensional array. A processor coupled to the TM sensors generates partial gradient contraction data, and complete gradient tensor data and corresponding complete gradient contraction data. The generated data can be used to align the three-dimensional array with a magnetic target. Once the three-dimensional array is aligned with the magnetic target, the generated data can be used to uniquely determine (i) distance to the magnetic target, (ii) position of the magnetic target relative to the three-dimensional array, and (iii) the magnetic dipole moment of the magnetic target.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Touch screen and method of operating the same

Provided are a touch screen and a method of operating the same. The touch screen includes a detecting part, a control part, and a tactile feedback part. The detecting part detects object's approach or contact. The control part receives a signal of the detecting part to output a feedback signal. The tactile feedback part receives the feedback signal of the control part to provide a tactile feedback to a contact position using a magnetic force. The tactile feedback uses the magnetic force of a magnetic dipole.
Owner:ELECTRONICS & TELECOMM RES INST

Magnetic dipole antenna structure and method

The spiral sheet antenna allows a small efficient antenna structure that is much smaller than the electromagnetic wavelength. It achieves the small size by introducing a high effective dielectric constant through geometry rather than through a special high dielectric constant material. It typically includes a rectangular cylinder-like shape, with a seam. The edges of the seam can overlap to make a high capacitance, or they can make a high capacitance by simply having the edges of the seam very close to each other. The high capacitance serves the same role as a high dielectric constant material in a conventional compact antenna.
Owner:KYOCERA AVX COMPONENTS (SAN DIEGO) INC

Method and apparatus measuring electrical anisotropy in formations surrounding a wellbore

A logging tool is disclosed having transmitting and receiving antennas to measure formation anisotropy. The antennas may preferably be combinations of toroidal, horizontal electric dipole, and horizontal magnetic dipole antennas. In one embodiment, the tool: (a) induces a current flow in the tubing or drill string traversing the formation in a borehole; (b) measures a signal difference between two receiver antennas on the drill string; (c) determines an apparent conductivity of the formation from the resistive component of the signal difference; and (d) uses the apparent conductivity to calculate an anisotropy coefficient with a knowledge of the horizontal conductivity. The tool may further determine a second apparent conductivity of the formation from the reactive component of the signal difference, and use both apparent conductivities to calculate the anisotropy coefficient and the horizontal conductivity. The vertical conductivity can also be determined from these two calculated values in the usual manner.
Owner:HALLIBURTON ENERGY SERVICES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products