Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

334 results about "Magnetic interaction" patented technology

A magnetic interaction hypothesis (MIH) is suggested which leads to a re-interpretation of the interaction mechanism for the magnetic force. This MIH is used to explain energization of charged particles on micro scale. Further considerations including the nuclear force, inter-atomic stability, and the reproduction of spectral lines, are reported.

Method and device for measuring density of a liquid

A sensor for measuring density of a liquid that comprises a float unit having a sealed hollow casing that contains a first magnet and a strain-gauge unit having a sealed hollow casing that contains a strain gauge and a second magnet arranged coaxially to the first magnet. Coaxiality of the magnets is provided by means of a guide rod installed on the casing of the strain-gauge unit and used to guide the float unit by inserting the guide rod into the central opening of the float unit casing. A characteristic feature of the sensor is that changes in the density of the liquid that cause displacement of the float cause detectable deformations of the strain gauge via forces of magnetic interaction between the first and second magnets without physical contact between the magnets. Since the elements of the sensor are located in sealed casings, they are not subject to damage and do not require maintenance.
Owner:PROVINA

High speed low power magnetic devices based on current induced spin-momentum transfer

The present invention generally relates to the field of magnetic devices for memory cells that can serve as non-volatile memory. More specifically, the present invention describes a high speed and low power method by which a spin polarized electrical current can be used to control and switch the magnetization direction of a magnetic region in such a device. The magnetic device comprises a pinned magnetic layer with a fixed magnetization direction, a free magnetic layer with a free magnetization direction, and a read-out magnetic layer with a fixed magnetization direction. The pinned magnetic layer and the free magnetic layer are separated by a non-magnetic layer, and the free magnetic layer and the read-out magnetic layer are separated by another non-magnetic layer. The magnetization directions of the pinned and free layers generally do not point along the same axis. The non-magnetic layers minimize the magnetic interaction between the magnetic layers. A current is applied to the device to induce a torque that alters the magnetic state of the device so that it can act as a magnetic memory for writing information. The resistance, which depends on the magnetic state of the device, is measured to thereby read out the information stored in the device.
Owner:NEW YORK UNIV

Touch detection method and system for a touch sensor

A a touch sensor including a keyboard having a key defining a touch sensing location, wherein the key is responsive to at least one of capacitive and electro-magnetic interactions with a user during a touch event includes control circuitry associated with the key, wherein the control circuitry outputs a control signal, and wherein an amplitude of the control signal is representative of an amount of interaction between the user and the key during a touch event. A controller is connected to the control circuitry and analyzes a variation in the amplitude of the control signal over a time period to identify the touch event.
Owner:TYCO ELECTRONICS CANADA

Thin-film magnetic device with strong spin polarisation perpendicular to the plane of the layers, magnetic tunnel junction and spin valve using such a device

A thin-film magnetic device comprises, on a substrate, a composite assembly deposited by cathode sputtering and consists of a first layer made of a ferromagnetic material with a high rate of spin polarisation, the magnetisation of which is in plane in the absence of any electric or magnetic interaction, a second layer made of a magnetic material with high perpendicular anisotropy, the magnetisation of which is outside the plane of said layer in the absence of any electric or magnetic interaction, and coupling of which with said first layer induces a decrease in the effective demagnetising field of the entire device, a third layer that is in contact with the first layer via its interface opposite to that which is common to the second layer and made of a material that is not magnetic and not polarising for electrons passing through the device.
Owner:COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES +1

High speed low power magnetic devices based on current induced spin-momentum transfer

The present invention generally relates to the field of magnetic devices for memory cells that can serve as non-volatile memory. More specifically, the present invention describes a high speed and low power method by which a spin polarized electrical current can be used to control and switch the magnetization direction of a magnetic region in such a device. The magnetic device comprises a pinned magnetic layer with a fixed magnetization direction, a free magnetic layer with a free magnetization direction, and a read-out magnetic layer with a fixed magnetization direction. The pinned magnetic layer and the free magnetic layer are separated by a non-magnetic layer, and the free magnetic layer and the read-out magnetic layer are separated by another non-magnetic layer. The magnetization directions of the pinned and free layers generally do not point along the same axis. The non-magnetic layers minimize the magnetic interaction between the magnetic layers. A current is applied to the device to induce a torque that alters the magnetic state of the device so that it can act as a magnetic memory for writing information. The resistance, which depends on the magnetic state of the device, is measured to thereby read out the information stored in the device.
Owner:NEW YORK UNIVERSITY

Magnetic lock device

InactiveUS6215381B1Coupled more securely and moreIncreasing magnetic interactionSnap fastenersNon-mechanical controlsForeign matterMagnetic tension force
A magnetic lock device includes a first element and a second element that are capable of being detachably coupled together by attracting each other magnetically under the magnetic interaction of permanent magnets, wherein each of the first and second elements includes an annular permanent magnet having a center bore through it, a ferromagnetic disk-like plate disposed to make contact with the permanent magnet, and a ferromagnetic projecting member extending from the disk-like plate and through the center bore of the permanent magnet. All of the component parts for the first and second elements are covered with any suitable synthetic resin film, sheet or the like and shielded from the outside, so that any foreign matter such as dust, particularly ferromagnetic particles like iron, cannot enter the gap or space that is present between the outer peripheral wall of the projecting member and the inner peripheral wall of the center bore through the annular permanent magnet. In one specific form of the magnetic lock device, each of the first and second elements is entirely covered with any suitable non-magnetic, synthetic resin film, sheet, covering or casing, or is entirely covered with a coating of any suitable non-magnetic, synthetic resin layer. In another specific form, each of the first and second elements is covered with any suitable non-magnetic, synthetic resin film, sheet, covering or casing, or is covered with a coating of any suitable non-magnetic, synthetic resin layer, except for the ends of the ferromagnetic projecting members in the first and second elements engaging each other that remain uncovered or exposed. In both forms, each of the first and second elements includes an annular permanent magnet, wherein one annular permanent magnet has a given polarity (S or N) opposed to the polarity (N or S) of the other annular permanent magnet on the side on which the first and second elements are to engage each other.
Owner:APPL ART LAB

Magnetic Toy Block

InactiveUS20120309259A1ToysMagnetic interactionMagnet
A toy block includes a body having external faces. A compartment is located behind each of the external faces and houses a magnet located freely within the compartment and adapted to turn upon magnetic interaction with another magnet external of the body so as to align attractively therewith. Two such toy blocks can be brought together face-to-face in any orientation and the magnet of one block will turn automatically into N-S alignment with a magnet of the other block so that the blocks attract and connect.
Owner:HOP LEE CHEONG INDAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products