Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3816results about "Galvano-magnetic device manufacture/treatment" patented technology

Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications

A magnetic element is disclosed that has a composite free layer with a FM1 / moment diluting / FM2 configuration wherein FM1 and FM2 are magnetic layers made of one or more of Co, Fe, Ni, and B and the moment diluting layer is used to reduce the perpendicular demagnetizing field. As a result, lower resistance x area product and higher thermal stability are realized when perpendicular surface anisotropy dominates shape anisotropy to give a magnetization perpendicular to the planes of the FM1, FM2 layers. The moment diluting layer may be a non-magnetic metal like Ta or a CoFe alloy with a doped non-magnetic metal. A perpendicular Hk enhancing layer interfaces with the FM2 layer and may be an oxide to increase the perpendicular anisotropy field in the FM2 layer. The magnetic element may be part of a spintronic device or serve as a propagation medium in a domain wall motion device.
Owner:TAIWAN SEMICON MFG CO LTD

Magnetic element with improved out-of-plane anisotropy for spintronic applications

ActiveUS20120205758A1Without degrading thermal stability and MR ratioEnhanced interfacial perpendicular anisotropyMagnetic-field-controlled resistorsGalvano-magnetic material selectionPerpendicular anisotropyAlloy
A magnetic element is disclosed wherein first and second interfaces of a free layer with a Hk enhancing layer and tunnel barrier, respectively, produce enhanced surface perpendicular anisotropy to lower switching current or increase thermal stability in a magnetic tunnel junction (MTJ). In a MTJ with a bottom spin valve configuration where the Hk enhancing layer is an oxide, the capping layer contacting the Hk enhancing layer is selected to have a free energy of oxide formation substantially greater than that of the oxide. The free layer may be a single layer or composite comprised of an Fe rich alloy such as Co20Fe60B20. With a thin free layer, the interfacial perpendicular anisotropy may dominate the shape anisotropy to generate a magnetization perpendicular to the planes of the layers. The magnetic element may be part of a spintronic device or serve as a propagation medium in a domain wall motion device.
Owner:TAIWAN SEMICON MFG CO LTD

Method and system for fabricating a narrow line structure in a magnetic recording head

A method for fabricating a structure in magnetic recording head is described. First and second hard mask layers are provided on the layer(s) for the structure. A BARC layer and photoresist mask having a pattern are provided on the second hard mask layer. The pattern includes a line corresponding to the structure. The pattern is transferred to the BARC layer and the second hard mask layer in a single etch using an etch chemistry. At least the second hard mask layer is trimmed using substantially the same first etch chemistry. A mask including a hard mask line corresponding to the line and less than thirty nanometers wide is thus formed. The pattern of the second hard mask is transferred to the first hard mask layer. The pattern of the first hard mask layer is transferred to the layer(s) such that the structure has substantially the width.
Owner:WESTERN DIGITAL TECH INC

Method and system for providing a magnetic recording transducer using a line hard mask

A method and system for fabricating a magnetic transducer is described. The transducer has a device region, a field region, and a magnetoresistive stack. The method and system include providing a hard mask on the magnetoresistive stack. The hard mask is inorganic and includes a sensor portion and a line frame. The sensor portion covers a first portion of the magnetoresistive stack corresponding to a magnetoresistive structure. The line frame covers a second portion of the magnetoresistive stack in the device region. The method and system include defining the magnetoresistive structure in a track width direction using the hard mask and providing at least one hard bias material after the magnetoresistive structure is defined. A first portion of the hard bias material(s) is substantially adjacent to the magnetoresistive structure in the track width direction. The method and system also include removing a second portion of the hard bias material(s).
Owner:WESTERN DIGITAL TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products