Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

843results about How to "Increased process window" patented technology

Gate structure and fabricating method thereof

A gate structure comprising a substrate, a gate dielectric layer, a first conductive layer, a second conductive layer, a cap layer and a first insulating spacer is provided. The gate dielectric layer is disposed on the substrate. The first conductive layer is disposed on the gate dielectric layer and has an opening. Part of the second conductive layer is disposed in the opening. The second conductive layer has an extrusion that protrudes above the opening of the first conductive layer. The extrusion has a cross-sectional width less than the width of the second conductive layer inside the opening. The cap layer is disposed on the extrusion. The first insulating spacer is disposed on part of the first conductive layer and covers the sidewalls of the extrusion. The inclusion of the extrusion in the second conductive layer decreases the resistance of the gate structure and promotes the efficiency of the device.
Owner:PROMOS TECH INC

Technology for manufacturing interlaced back contact (IBC) crystalline silicon solar battery with ion implantation

A technology for manufacturing an interlaced back contact (IBC) crystalline silicon solar battery with ion implantation comprises the following steps: (1) selecting a crystalline silicon base body to perform surface texturing; (2) forming a homotype doping layer having the same electrical property with the base body on the positive surface; (3) forming n+ doping regions and p+ doping regions interlaced to each other on the back surface of the crystalline silicon by the ion implantation; (4) insulating the n+ doping regions and the p+ doping regions on the back surface of the crystalline silicon base body; (5) performing annealing in order to eliminate crystalline damage caused by iron implantation to the crystalline silicon base body, and performing thermal oxidation to form a SiOx oxide layer; (6) forming a passive anti-reflecting film on the positive surface of a silicon chip; (7) forming a passive film on the back surface of the silicon chip; and (8) forming an emitter and a metal contact electrode of a base electrode on the back surface, and forming the ohmic contact of the metal electrode with the n+ doping regions and the p+ doping regions after one sintering. The method canaccurately control concentration, depth and position of the doping, and the technological process is simple, and easy to operate.
Owner:JA SOLAR TECH YANGZHOU

Preparation method of double-sided passivated crystalline silicon solar cell

The invention discloses a preparation method of a double-sided passivated crystalline silicon solar cell, belonging to the technical field of photovoltaic power generation. The preparation method comprises the following steps of: firstly, respectively carrying out surface precleaning and surface texturing on P-shaped single crystal silicon and a polycrystalline silicon wafer by adopting an alkaline solution and an acid solution; secondly, diffusing by using phosphorus oxychloride as a diffusion source to form a PN junction; thirdly, removing a phosphosilicate glass on the surface of the silicon wafer by adopting a chemical wet method, and etching the edge of the silicon wafer by adopting a plasma; fourthly, preparing a silicon nitride film on the surface of an emitting region of a P-type silicon wafer by adopting a plasma enhanced chemical vapor deposition method; fifthly, preparing a mixed phase film material of hydrogenated microcrystalline silicon and amorphous silicon by adopting a hot filament chemical vapor deposition method, depositing a film at one side of the P-type silicon wafer, and passivating the defects and a dangling bond on the surface of the P-type silicon wafer; and sixthly, sintering a screen printing back electrode and a screen printing positive electrode to form the solar cell. The invention lowers the probability of compounding photo-generated minority carriers on the back surface, enhances the long-wave light quantum efficiency and creates the conditions of transportation and collection of the photo-generated carriers.
Owner:SHANGHAI JIAO TONG UNIV

Semiconductor device and fabricating method thereof

ActiveUS20130161754A1Process yield and quality may be enhanceImprove process windowTransistorSemiconductor/solid-state device manufacturingWork functionContact hole
A manufacturing method of a semiconductor device includes the following steps. First, a substrate is provided. At least one gate trench and a first inter-layer dielectric layer are formed on the substrate. A work function metallic layer is then formed in the gate trench. A first contact hole is then formed in the first inter-layer dielectric layer. A main conductive layer is formed in the gate trench and the first contact hole simultaneously.
Owner:UNITED MICROELECTRONICS CORP

MIM capacitor structure and method of fabrication

A method of forming a metal-insulator-metal (MIM) capacitor wherein a plate of a MIM capacitor is formed in the entire thickness of a metallization layer of a semiconductor device. At least one thin conductive material layer is disposed within the material of the metallization layer to reduce the surface roughness of the metallization layer, thus improving the reliability of the MIM capacitor. The thin conductive material layer may comprise TiN, TaN, or WN and may alternatively comprise a barrier layer disposed over or under the TiN, TaN, or WN. One plate of the MIM capacitor is patterned using the same mask that is used to pattern conductive lines in a metallization layer, thus reducing the number of masks that are required to manufacture the MIM capacitor.
Owner:INFINEON TECH AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products