The invention relates to the technical fields of surgical hemostasis and chronic heal wound hemostasis and wound protection, and in particular relates to a biodegradable hemostatic membrane. Alkaline crosslinking is carried out on sodium hyaluronate, a cellulose derivative and a cross-linking agent to obtain gel I; sodium alginate or sodium hyaluronate and 1,4-Butanediol diglycidyl ether are mixed to obtain gel II; the gel I and the gel II are mixed and cross-linked, and then purified and dried, and subjected to film formation under pressure to obtain the biodegradable hemostatic membrane. The obtained membrane is loose in structure and high in safety, easily attaches to and disperses on the surface of a wound, quick to stop bleeding, good in biocompatibility, suitably adjustable in in-vivo degradation time, wide in application range, low in cost, short in process period, little in pollution, low in energy consumption and easy for realizing industrialization, and has the good functions of stopping bleeding, promoting healing and preventing inflammation.