Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3519 results about "FluoProbes" patented technology

The FluoProbes series of fluorescent dyes were developed by Interchim to improve performances of standard fluorophores. They are designed for labeling biomolecules, cells, tissues or beads in advanced fluorescent detection techniques.

Up/down conversion dual-mode fluorescent nanomaterial for Nd<3+> sensitization and synthesis method thereof

The invention belongs to the technical field of nanometer biological materials, and particularly relates to an 800nm excitation-based up/down conversion dual-mode fluorescent nanomaterial for Nd<3+> sensitization and a synthesis method thereof. The synthetic up/down conversion dual-mode fluorescent nanomaterial for Nd<3+>sensitization designed by the invention has a multi-layer core-shell structure, and comprises a down conversion luminous layer, an up conversion luminous layer, an isolation layer and a passivation layer. Different layers of the material synergistically play respective different roles, and meanwhile, the dual-mode fluorescent probe with up conversion fluorescence and down conversion fluorescence is finally achieved under an 800nm of excitation light with a low-heat effect. The up conversion excitation light is expanded to about 800nm from 980nm by Nd<3+>, Yb<3+> and Er<3+>-doped NaGdF4:Nd, Yb, Er up conversion layer due to introduction of Nd<3+>, and the fluorescent process from a near infrared light to a visible light is achieved. The process meets the requirements of an in-vitro fluorescent probe. In addition, the typical down conversion fluorescence from the near infrared light to a far infrared light is also achieved in one nanoparticle due to the synergistic effect of the NaGdF4:Nd core.
Owner:FUDAN UNIV

Nitrogen-doped fluorescent carbon quantum dot and preparation method and application thereof

The invention discloses a nitrogen-doped fluorescent carbon quantum dot and a preparation method and application thereof, and belongs to the technical field of material science. Fish wastes (such as fish scales, bones and skins) are cleaned, then hydrothermal reaction is directly performed to obtain nitrogen-doped fluorescent carbon quantum dot aqueous dispersion, and finally filtration, dialysis and freeze-drying are performed to obtain nitrogen-doped fluorescent carbon quantum dot solid. The size of the nitrogen-doped fluorescent carbon quantum dot prepared by using the preparation method disclosed by the invention is smaller than or equal to 10nm, the nitrogen content is smaller than or equal to 20 percent, the surface of the quantum dot has nitrogen-containing and oxygen-containing functional groups, and the quantum efficiency is 17-30 percent. The nitrogen-doped fluorescent carbon quantum dot and the preparation method and application thereof have the advantages that the preparation method is environmental-friendly, the operation is simple, the requirements on equipment are low, the preparation method is suitable for large-scale production, and the prepared nitrogen-doped fluorescent carbon quantum dot has excellent fluorescent performance and can be widely applied to fields such as photoelectric materials, biological imaging and fluorescent probes.
Owner:FUZHOU UNIV

Visible and reversible ratiometric fluorescent probe as well as preparation method and application thereof

The invention discloses a visible and reversible fluorescent probe which comprises a cyanine fluorescent group and a benzothiazole group, and the general formula of the probe is shown in the description. The preparation method of the reversible fluorescent probe comprises the following steps: (1) dropwise adding phosphorus oxychloride into salicylaldehyde and paraformaldehyde for reaction, so as to obtain a product 1; (2) enabling the product 1 and hexamethylene-tetramine to react, so as to obtain a product 2; (3) enabling the product 2 and 2-aminobenzenethiol to react at the room temperature, so as to obtain a product 3; (4) enabling the product 3 and a compound 4 to react, so as to obtain the visible and reversible fluorescent probe. According to the ratiometric fluorescent probe provided by the invention, obvious color variation can be found out under natural light or an ultra-violet lamp, and the qualitative detection of sulfur dioxide gas can be implemented under natural light or a hand-held ultra-violet lamp, so that the operation is simple, high convenience and quickness are achieved, and the effect is remarkable; the fluorescent probe can effectively prevent interference from other impurities in samples, and is excellent in selectivity; in addition, the cumbersome pre-processing process of samples is avoided, so that the detection efficiency is high.
Owner:HEFEI INSTITUTES OF PHYSICAL SCIENCE - CHINESE ACAD OF SCI

Phenanthrene and imidazole-coumarin double-fluorescent group ratio fluorescent molecular probe for iron ion detection and synthesis and use methods thereof

The invention provides a phenanthrene and imidazole-coumarin double-fluorescent group ratio fluorescent molecular probe for iron ion detection and synthesis and use methods thereof, relates to fluorescent molecular probes and synthesis and application thereof and aims to solve the problem that an existing Fe<3+> fluorescent probe is prone to being interfered by pH, concentration and other metal ions. The fluorescent molecular probe is 4-methyl-7-hydroxide radical-8-[2-(1- phenyl group-1H-phenanthrene and [9, 10-d] imidazole-2-)benzene ammonia methylene]-2H-pyran-2-ketone. The phenanthrene and imidazole-coumarin double-fluorescent group ratio fluorescent molecular probe is formed by conducting condensation on 1-N-phenyl group-2-(2-aminophenyl)-1H-phenanthrene and [9, 10-d] imidazole and 4-methyl-7-hydroxide radical-8- formyl group coumarin, and the yield is 75-85%. The fluorescent molecular probe is dissolved in mixed liquid of N, N- dimethylformamide and an HEPES buffering solution, existence of iron ions is judged through the absorbance value or fluorescence intensity change before and after adding of test samples, and the fluorescent molecular probe can be used for detection of Fe<3+> pollution in water.
Owner:QIQIHAR UNIVERSITY

Fluorescent nanometer probe for detecting hydrogen sulfide and preparation method and application of fluorescent nanometer probe

The invention discloses a fluorescent nanometer probe for detecting hydrogen sulfide and a preparation method and application of the fluorescent nanometer probe.The fluorescent nanometer probe is formed by simply mixing carbon quantum dots containing the nitrogen element with an aqueous solution containing nanometer silver.According to the fluorescent nanometer probe and the preparation method and application thereof, after the quantum dot-nanometer silver fluorescent probe is assembled, representation is conducted, experiment conditions for detecting hydrogen sulfide are optimized, then linear detection and interferent analysis are conducted on hydrogen sulfide, and finally the fluorescent nanometer probe can be applied to detection and analysis of hydrogen sulfide in an actual biological sample.When used for detecting hydrogen sulfide, the fluorescent nanometer probe is excellent in sensitivity and stability, the minimum detection limit reaches 91 pM, and the fluorescent nanometer probe can be used for detecting hydrogen sulfide in the actual sample.
Owner:CAPITAL NORMAL UNIVERSITY

Amino acid-fluorophore compound and application thereof

The invention relates to an amino acid-fluorophore compound and application of the compound, wherein the general structural formula of the amino acid-fluorophore compound is (I), (II), (III), and (IV) or a free form thereof, wherein R1 is selected from various amino acid side chains, preferably methyl, propyl, 2-methylthio ethyl, benzyl, phenylethyl, 2-cyclohexyl ethyl, 4-isopropyl phenyl and 4-dimethyl amino phenyl; R2 is selected from various fluorophores, preferably 7-hydroxyl coumarin, naphthalimide fluorophores, Nile red series and Cy fluorophores; and X is C or N. Fluorescent probe molecules can be used for detecting the activity (enzyme level and cell level) of aminopeptidase N, can be used as a probe tool for detecting the tissue distribution of aminopeptidase N and tumor tissue imaging, and can be used as a diagnosis tool for various diseases due to abnormal expression of aminopeptidase N. In addition, the preparation method of the compound has the advantages of mild reaction conditions, easily-accessible and cheap raw materials and simplicity in operation and after-treatment.
Owner:SHANDONG UNIV

Single-emission up-conversion nano fluorescent probe and synthetic method thereof

The invention belongs to the technical field of nano biological materials and particularly relates to a single-emission up-conversion nano fluorescent probe and a synthetic method thereof. The fluorescent probe is a nanocrystal with a structure comprising a core layer and three shell layers and comprises an up-conversion luminescence center core layer, an inert shell layer, a silicon dioxide shell layer and a dye-doped silicon dioxide shell layer; an active ion doped rare earth nanocrystal is arranged at the up-conversion luminescence center, and the inert shell layer completely covers the luminescence core; the silicon dioxide shell layer can avoid fluorescence resonance energy transfer between the up-conversion luminescence center and dye; the dye-doped silicon dioxide shell layer is used for removing unwanted up-conversion emission peaks and reserving specific up-conversion emission peaks, and single-emission up-conversion fluorescence is realized. By means of the probe and the method, multiple signal modules can be detected in situ simultaneously, and further, the detection sensitivity and the accuracy are improved. The fluorescent probe has a broad application prospect in the aspects of protein expression, high throughput screening of biological samples, multi-channel biological detection, disease diagnosis and the like.
Owner:FUDAN UNIV

Specific fluorescent probe for identifying hydrogen sulfide and application of probe

The invention relates to a specific fluorescent probe for identifying hydrogen sulfide and an application of the probe, belonging to the field of fine chemical engineering. The fluorescent probe is a resorufin derivative. Resorufin sodium salt, potassium carbonate and 2, 4-binitro bromobenzene are mixed in proportion in acetonitrile liquor to be heated, and finally are purified by silica gel chromatography to obtain the fluorescent probe. The fluorescent probe and a corresponding hydrogen sulfide content detection process are not interfered by matrixes and impurities in a biosystem and can be used for quantitative determination of hydrogen sulfide content in various biosystems. The fluorescent probe has high specificity and can be hydrolyzed with hydrogen sulfide after being specifically cyclized to obtain a hydrolysate with broken ether bonds. The probe is low in cost and feasible, can be obtained by chemical synthesis and is simple and feasible in synthetic process. The probe is high in sensitivity, and has good fluorescence emission spectrum characteristics (600-650nm). In the wavelength range, the background fluorescence of a biological sample is weak, so that the probe is suitable for detecting hydrogen sulfide content in cells. Hydrogen sulfide is quantitively detected by drawing a standard curve.
Owner:CHANGSHU RES INST OF DALIAN UNIV OF TECH CO LTD

Heptamethine cyanine active fluorescent probe and preparation method and application thereof

The invention relates to a heptamethine cyanine active fluorescent probe and a preparation method and application thereof. The structural formula of the heptamethine cyanine active fluorescent probe is as shown in the specification, wherein X=II-IX; each of R1 and R2 is (CH2)mCH3, (CH2)nOH, (CH2CH2O)pCH3 and CH2C6H5; each of R3 and R4 is H, SO3H, SO3Na and SO3K; each of a, b, c, d, e, f and g is 2-8; each of n, m and p is 1-10. The heptamethine cyanine active fluorescent probe has the advantages that the heptamethine cyanine active fluorescent probe is based on near-infrared long-wave heptamethine cyanine dye, indoline is selected as the aroma parent nucleus to increase fluorescence intensity, and methenyl chain intermediate cyclohexene rigid bridging enhances stability; nitrogen derivatives with chemical reactivity sites are used to perform nucleophilic substitution on the meso-position of the heptamethine cyanine parent dye, and accordingly Stokes shift and active chemical groups areincreased greatly to facilitate the fluorescent labeling of various substances; the fluorescent probe is of a symmetrical structure, preparation and purification processes are simplified, and cost islowered favorably; the probe can be used as the fluorescent labeling probe of biological molecules such as high-sensitivity protein, sugar and DNA and nano carriers to perform cell or living-body horizontal fluorescence imaging, and the like.
Owner:INST OF BIOMEDICAL ENG CHINESE ACAD OF MEDICAL SCI

Method for preparation of water-soluble luminous graphite-phase carbon nitride nano kelp

The invention provides a method for preparation of water-soluble luminous graphite-phase carbon nitride nano kelp. The water-soluble luminous graphite-phase carbon nitride nano kelp is obtained by high-temperature polycondensation of precursors containing carbon and nitrogen in a mixed molten chloride salt system. The method is universal, and target products can be obtained by adoption of various precursors; the prepared nano kelp is uniform in shape, excellent in dispersibility in water, capable of forming high-concentration stable transparent colloidal solution and stable in existence in both alkaline and weak acidic environments; under excitation of ultraviolet light, solid nano kelp and the colloidal solution thereof both have strong and stable blue photoluminescence. On the basis of excellent photoluminescence performance and water solubility, the nano kelp is expected to serve as fluorescent probes to be applied to the fields of bioimaging, biomedical engineering, analysis, monitoring and the like, and large-scale production is expected to realize. Furthermore, the method for preparation of the water-soluble luminous graphite-phase carbon nitride nano kelp has the advantages of simplicity in operation, environment friendliness, low cost and the like.
Owner:ZHENGZHOU UNIV

Sensitive fluorescent lighting probe method for determining CMC (critical micelle concentration) of surfactant

The invention discloses a method for determining the CMC (critical micelle concentration) of surfactant. The new method for determining the CMC of surfactant is designed by using an aggregation-induced emission organic substance having a structure shown in Formula (I) as a fluorescent probe according to the characteristics of the organic substance. The method is to determine the CMC through the highest fluorescence intensity mutation point of the probe, while the CMC fluorescent determination method reported by others is to determine the CMC through the lowest fluorescence intensity mutation point of the probe. Therefore, the CMC fluorescent determination method disclosed by the invention has higher sensitivity in comparison with the reported CMC fluorescent determination method. According to the CMC fluorescent determination method disclosed by the invention, when surfactant detection solutions of different concentrations are prepared, the concentration of the fluorescent probe does not need to be maintained at the same level, thus greatly simplifying the operation steps and eliminating the error caused by measuring the fluorescent probe repeatedly. The Formula (I) is shown in the specification.
Owner:SOUTHERN MEDICAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products