Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

115results about How to "High hole density" patented technology

Method for preparing polymer microporous foaming material by supercritical mould foaming

The invention provides a method for preparing a polymer microporous foaming material by supercritical mould foaming. The method comprises the following steps of: heating a foaming mould on a mould press to the foaming temperature; placing a polymer into the mould; closing the mould by using the mould press; sealing the mould; introducing supercritical fluid, which swells and diffuses to the polymer, into the mould; and opening the mould by using the mould press to release pressure and foam to obtain the polymer microporous foaming material. Compared with the prior art, the method has the advantages that: the high-temperature and high-pressure supercritical fluid is used for swelling the polymer, so the moulding cycle is greatly shortened; the limit that only microporous foaming sheet material with lesser thickness can be manufactured in the prior art is broken through, so a polymer microporous foaming plate with greater thickness can be manufactured; when the mould is opened, the pressure-releasing speed is high and the foaming pore core-forming speed is high, so the formed microporous foaming material has smaller foaming pores, higher pore density and more excellent performance; and multiple layers of moulds can be placed on one mould press, so the method is suitable for industrialized scale production.
Owner:常州福源科技新材料有限公司

Customized polishing pads for CMP and methods of fabrication and use thereof

The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior themo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads. In addition, these pads can be designed to tune the coefficient of friction by surface engineering, through the addition of solid lubricants, and creating low shear integral pads having multiple layers of polymeric material which form an interface parallel to the polishing surface. The pads can also have controlled porosity, embedded abrasive, novel grooves on the polishing surface, for slurry transport, which are produced in situ, and a transparent region for endpoint detection.
Owner:CMC MATERIALS INC

Nitride semiconductor light emitting device

The present invention discloses a nitride semiconductor light emitting device with improved light efficiency. The nitride semiconductor light emitting device includes a n-type nitride layer and p-type nitride layer, an active layer disposed between the n-type and p-type nitride layers and with a multiple quantum well structure wherein a plurality of quantum well layers and a plurality of quantum barrier layers are stacked alternatively in the active layer, and a superlattice layer between the active layer and the p-type nitride layer with asymmetric structure. Herein, a thickness of a well layers gradually increases from the p-type nitride layer to the active layer and the height of the barrier layers gradually increases from the active layer to the p-type nitride layer and therefore, an injection efficiency of a hole supplied from p-type nitride layer to an active layer is increased.
Owner:INTELLECTUAL DISCOVERY CO LTD

Heat Sink and Electronic Device and Heat Exchanger Applying the Same

A heat sink includes a substrate, at least a first fin set and at least a second fin set. The first fin set is disposed on the substrate and has a plurality of first fins, and the first fin has a plurality of first holes. The second fin set is disposed on the substrate and has a plurality of second fins, and the second fin has a plurality of second holes. The total area of the second holes is larger than that of the first holes. An electronic device and a heat exchanger which are configured with the heat sink are also disclosed. The structure and configuration of the heat fins can increase the wind guiding effect, and thus improve the heat-dissipation efficiency.
Owner:DELTA ELECTRONICS INC

Foaming composite material with high thermal conductivity

The invention relates to a resin foaming composite material, especially to a foaming composite material with high thermal conductivity. The foaming composite material is prepared by the following steps: primary mixing: 8-12 parts by weight of a heat conduction material is added into 40-100 parts by weight of matrix resin to obtain a primary mixed object; plasticization and granulation: 2-8 parts by weight of a fire retardant, 6-10 parts by weight of a softening plasticizer, 3-7 parts by weight of a flexibilizer, 1-4 parts by weight of a coupling agent and 0.6-1.2 parts by weight of an antioxidant are added into the primary mixed object for blending modification and plasticization, and extrusion and granulation are carried out to obtain a first granule; remixing and foaming: 15-25 parts by weight of one or more selected from fatty alcohol polyoxyethylene lauryl ether sulfate sodium or an azo-compound are mixed with one or more selected from the first granule and 30-70 parts by weight of the matrix resin, extrusion and foaming are conducted to prepare a foaming material, and a full-open foaming material layer is compounded on the foaming material through glue to form the foaming composite material with high thermal conductivity. The material provided by the invention has high thermal conductivity and is waterproof and shock-absorbing.
Owner:ZHEJIANG RUNYANG NEW MATERIAL TECH

Preparation method of porous alpha-alumina membrane

A preparation method of a porous alpha-alumina membrane comprises the following steps: carrying out an annealing and electric polishing pretreatment on a high purity aluminum foil; taking the processed aluminum foil as the positive electrode, and graphite as the negative electrode, then carrying out two-step positive electrode oxidation in a mixed solution of phosphoric acid and aluminum oxalate to obtain an aluminum-base-containing porous anodic alumina membrane; subjecting the obtained aluminum-base-containing porous anodic aluminum membrane to a pore enlarging treatment; then subjecting the pore-enlarged aluminum-base-containing porous anodic alumina membrane to a water boiling treatment or a hydrothermal treatment; then removing the aluminum base from the aluminum-base-containing porous anodic alumina membrane, which has been treated by water boiling or a hydrothermal treatment; using a sodium citrate solution to remove the baffle layer and alumina hydrate on the external layer of the porous alumina membrane from the aluminum-base-free porous anodic alumina membrane so as to form a periodical hexahedral densely-arranged alumina through hole structure finally; and sintering the prepared alumina membrane with a periodical hexahedral densely-arranged alumina through hole structure in a muffle furnace at a high temperature so as to obtain porous alpha-alumina membrane.
Owner:常毅

Method for preparing doping porous silicon ball

The invention discloses a method for preparing a doping porous silicon ball. The method includes the steps that a silicon ball with certain doping content is selected, after being washed by hydrofluoric acid, the silicon ball is immersed in solutions formed by nitrate and hydrofluoric acid, after ultrasonic processing is carried out, the silicon ball is immersed in solutions prepared by the hydrofluoric acid and oxidizing agents and reacts at a certain temperature for a certain time period, then the silicon ball is washed in a centrifugal mode, and ultimately the nano porous silicon ball is prepared after nitric acid washing and other post-processing procedures. The best variety and the best concentration of reaction solutions, the optimum proportion of components, the best reaction temperature, the best reaction time, best ultrasonic frequency and best ultrasonic processing time are screened out through a large quantity of experiments. According to the whole preparation method, process design is reasonable, operability is high, production cost is low, production efficiency is high, and large-scale industrial production can be achieved. According to the high-purity doping porous silicon ball prepared in the method, the shapes of holes are regular, the holes are uniformly distributed and honeycomb-shaped, the shape of the silicon ball is regular, and the method can be widely used in the field of lithium batteries, solar batteries, semi-conductors, sensors and the like.
Owner:YANCHENG INST OF TECH

Method for preparing organic/inorganic composite nanowire filtering membrane

The invention discloses a method for preparing an organic / inorganic composite nanowire filtering membrane. The method comprises the following steps of: dissolving metal salt in an aqueous solution of ethanolamine to prepare a metal hydroxide nanowire; adding a heparin solution into a metal hydroxide nanowire solution to prepare a core-shell structured composite nanowire solution; fixing a polymerporous membrane in a filtering container, keeping a membrane surface upward, adding the core-shell structured composite nanowire solution into the filtering container, and filtering under reduced pressure; and drying. Negatively charged heparin is fixed on the surface of the positively charged metal hydroxide nanowire through electrostatic action to form the core-shell structured composite nanowire taking the nanowire as a core and the heparin as a shell, and the composite nanowire is deposited on the surface of the polymer porous membrane by a dynamic membrane preparation method to form the organic / inorganic composite nanowire filtering membrane with antibacterial property and blood compatibility. The nanowire has small diameter, small pore size when loaded, and high pore density, and the preparation process is simple and low in cost.
Owner:ZHEJIANG UNIV

Filtering film processed through laser and laser processing system

The invention discloses a filtering film processed through a laser. The filtering film processed through the laser can be used for filtering contamination particles with the dimensions being from hundreds of nanometers to hundreds of micrometers. The filtering film processed through the laser is wide in application range, and effects are better when the hole diameter of the filtering film processed through the laser is smaller than the diameter of the contamination particles. The invention further discloses a laser processing system used for processing the filtering film. The laser processing system comprises a laser device, a beam expanding device, a diffraction optical element, a galvanometer unit, a lens, a carrying mechanism and a corresponding control unit, wherein the laser device, the beam expanding device, the diffraction optical element, the galvanometer unit, the lens, the carrying mechanism and the corresponding control unit are sequentially arranged. Through selection of laser processing parameters, by the adoption of a galvanometer and the carrying mechanism for assistance, an micro-hole array with the hole diameter being from hundreds of nanometers to hundreds of micrometers can be manufactured on the filtering film made of a selected material. The laser processing system can be used for processing the filtering film (net) and is high in work efficiency, low in production cost and free of tool consumption, and the processed filtering film is large in micro-hole density and has a good filtering effect.
Owner:INNO LASER TECH CORP LTD

Method for preparing polymer microporous foaming material by supercritical mould foaming

The invention provides a method for preparing a polymer microporous foaming material by supercritical mould foaming. The method comprises the following steps of: heating a foaming mould on a mould press to the foaming temperature; placing a polymer into the mould; closing the mould by using the mould press; sealing the mould; introducing supercritical fluid, which swells and diffuses to the polymer, into the mould; and opening the mould by using the mould press to release pressure and foam to obtain the polymer microporous foaming material. Compared with the prior art, the method has the advantages that: the high-temperature and high-pressure supercritical fluid is used for swelling the polymer, so the moulding cycle is greatly shortened; the limit that only microporous foaming sheet material with lesser thickness can be manufactured in the prior art is broken through, so a polymer microporous foaming plate with greater thickness can be manufactured; when the mould is opened, the pressure-releasing speed is high and the foaming pore core-forming speed is high, so the formed microporous foaming material has smaller foaming pores, higher pore density and more excellent performance; and multiple layers of moulds can be placed on one mould press, so the method is suitable for industrialized scale production.
Owner:SHINCELL NEW MATERIAL CO LTD

Multilayer casting filter

The invention discloses a multilayer casting filter, comprising a support layer (1) made of a ceramic material and a filtering layer (2) made of a ceramic material and arranged on the support layer. The filtering layer contains alveolate filtering holes (3); the support layer contains grid liquid flow holes (4); a hole density of the filtering layer is larger than that of the support layer; an aperture of a filtering hole is smaller than that of a liquid flow hole; a porosity of the support layer is larger than that of the filtering layer (2); and a thickness of the filtering layer is smaller than that of the support layer. The invention can simplify a pouring system, increase produce rate of a cast technology, reduce cast costs, enhance flow velocity and continuity of pouring, facilitate cast mold filling, improve high temperature impact resistance and high temperature bearing capacity of the filter, ensure integrity of the filter in the whole pouring process, facilitate filtering purification of metal liquid and improve inner quality and comprehensive performances of a cast product, and is suitable for pouring of multiple-part mold and large and medium size cast.
Owner:JIANGXI BAOAN NEW MATERIAL TECH

Method for preparing ultra-filtration membranes with high selectivity and high permeability

The invention discloses a method for preparing ultra-filtration membranes with high selectivity and high permeability. The method includes heating and stirring polyethersulfone, pluronic F127 and dimethylformamide in water bath at the temperature of 70 DEG C according to a mass ratio of 20:20:85 for 4 h, and carrying out static defoaming for 2 h to obtain casting membrane solution; adding tannic acid aqueous solution with certain concentration into a beaker, and stirring the tannic acid aqueous solution at the room temperature for 1 h to be used as coagulating bath; cooling the casting membrane solution until the temperature of the casting membrane solution reaches the room temperature, then pouring the casting membrane solution on glass plates, forming liquid membranes with the thicknesses of approximately 200 micrometers by means of scraping, placing the liquid membranes in the coagulating bath at the constant temperature of 25 DEG C and carrying out continuous solidification and membrane formation for 10 minutes; continuously immersing obtained membranes in sodium hydroxide solution for 12 h, and continuously immersing the membranes in ionized water for 24 h to obtain the ultra-filtration membranes with the high selectivity and the high permeability. The potential of hydrogen of the sodium hydroxide solution is 12. The method has the advantages that hole parameters of the ultra-filtration membranes can be optimized by the aid of interfacial assembly of tannic acid and the pluronic F127 in membrane formation procedures, in other words, the hole density can be increased, and the hole sizes can be reduced, so that the ultra-filtration membranes prepared by the aid of the method are high in selectivity and permeability.
Owner:TIANJIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products