Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

972 results about "Nanoporous" patented technology

Nanoporous materials consist of a regular organic or inorganic framework supporting a regular, porous structure. The size of the pores is generally 100 nanometers or smaller. Most nanoporous materials can be classified as bulk materials or membranes. Activated carbon and zeolites are two examples of bulk nanoporous materials, while cell membranes can be thought of as nanoporous membranes. A porous medium or a porous material is a material containing pores (voids). The skeletal portion of the material is often called the "matrix" or "frame". The pores are typically filled with a fluid (liquid or gas). There are many natural nanoporous materials, but artificial materials can also be manufactured. One method of doing so is to combine polymers with different melting points, so that upon heating one polymer degrades. A nanoporous material with consistently sized pores has the property of letting only certain substances pass through, while blocking others.

CVD nanoporous silica low dielectric constant films

A method and apparatus for depositing nano-porous low dielectric constant films by reaction of a silicon hydride containing compound or mixture optionally having thermally labile organic groups with a peroxide compound on the surface of a substrate. The deposited silicon oxide based film is annealed to form dispersed microscopic voids that remain in a nano-porous silicon oxide based film having a foam structure. The nano-porous silicon oxide based films are useful for filling gaps between metal lines with or without liner or cap layers. The nano-porous silicon oxide based films may also be used as an intermetal dielectric layer for fabricating dual damascene structures. Preferred nano-porous silicon oxide based films are produced by reaction of 1,3,5-trisilanacyclohexane, bis(formyloxysilano)methane, or bis(glyoxylylsilano)methane and hydrogen peroxide followed by a cure / anneal that includes a gradual increase in temperature.
Owner:APPLIED MATERIALS INC

Nanometer hole metal-organic frame material in single-level or multilevel pore canal structure and preparation method thereof

The invention relates to a nanometer hole metal-organic frame material in a single-level or multilevel pore canal structure as well as a preparation method and the application thereof. The preparation method comprises the following steps: at least one metal salt and at least one polyfunctional group organic ligand reacts with at least one template agent in at least one solvent under the condition that no hole aid agent exists or only one hole aid agent exist, and single-level or multilevel nanometer holes or channels with the size of 0.5-100 nm exist in at least one direction in the internal space of the obtained metal-organic frame solid. The nanometer hole metal-organic frame material with large hole size and the nanometer hole metal-organic frame material in the layered multilevel pore canal structure can be obtained without the synthesis of the large-size organic ligand and have wide applications.
Owner:ANHUI UNIVERSITY

Metal-organic framework material with nano pores and preparation method and application thereof

The invention relates to a metal-organic framework material with nano pores and a preparation method and application thereof. The method comprises the step: at least one metal salt react with at least one single-tooth or multi-teeth organic compound which can match with metal ions when at least one solvent exists under conditions of ultrasonic radiation and normal pressure; and the internal part of the obtained metal-organic framework solid has pores and channels with the sizes of 0.3 to 100nm with at least one direction in space. The invention has mild preparation condition and the product has wide application.
Owner:ANHUI UNIVERSITY

Nanoporous Drug Delivery System

Disclosed herein are controlled release drug delivery systems. The systems comprise a medical device at least one nonoporous surface, at least one bioactive agent and optionally a biodegradable polymer. The nanoporous surfaces of the medical devices contain nanopores capable of acting as reservoirs for drugs that are controllably released.
Owner:MEDTRONIC VASCULAR INC

Preparation method of metal organic framework based composite phase-change material

The invention relates to a preparation method of a metal organic framework based composite phase-change material. The method comprises the steps that a metal organic framework material substrate is prepared selectively; hole diameter size design and hole channel polarity regulation and control are performed on the substrate according to the size and the kind of a core material, so that a phase-change core material to be loaded is matched better; the soluble phase-change core material is prepared into a solution; a metal organic framework material is dispersed in the prepared phase-change material solution; a phase-change material is adsorbed by utilizing an extra-large specific surface area and a nano hole channel structure of the metal organic framework material; drying is performed; and then the metal organic framework composite phase-change material with a shaping effect is obtained. According to the method, a novel metal organic framework based composite phase-change material is developed; the prepared metal organic framework based composite phase-change material can effectively avoid leakage and the like, and has the advantages of adjustable nano hole structure and wide core material selection range; the method is simple in technology and mild in reaction condition, and is suitable for scale production; and a raw material is cheap and easy to obtain.
Owner:UNIV OF SCI & TECH BEIJING

Nanostructures synthesized using anodic aluminum oxide

This invention provides ways to fabricate nanotubes and nanobead arrays by utilizing nanopores in anodic aluminum oxide (AAO) membranes. Nanotubes of bismuth and other low melting point metals with controlled diameters and lengths can be fabricated by sintering AAO coated with appropriate metals at temperatures above their melting points. Carbon nanotubes may also be readily formed by carbonizing a polymer on the interior walls of the nanopores in AAO membranes. Palladium nanobead arrays which can be used as ultrafast hydrogen sensors are fabricated by coating the flat surface of AAO membranes with controlled pore-wall ratios.
Owner:UCHICAGO ARGONNE LLC

Micro structure for sensing trace chemicals

A method to fabricate an optical scattering probe and the method includes the steps of a) depositing an conductive layer on a substrate followed by depositing a noble metal layer on top of the conductive layer and then an aluminum layer on top the noble metal layer; b) anodizing the aluminum layer to form a porous aluminum oxide layer having a plurality of pores; and c) etching the plurality of pores through the aluminum oxide layer and the noble metal layer for forming a nano-hole array. In a preferred embodiment, the step of etching the plurality of pores through the aluminum oxide layer and the noble metal layer further comprising a step of widening the pores followed by removing the aluminum oxide layer for forming a plurality of noble metal column on top of the conductive layer.
Owner:EXCELLENT CAPACITY LTD

Membranes for separation

The present invention relates to a composite membrane for gas separation and / or nanofiltration of a feed stream solution comprising a solvent and dissolved solutes and showing preferential rejection of the solutes. The composite membrane comprises a separating layer with intrinsic microporosity. The separating layer is suitably formed by interfacial polymerisation on a support membrane. Suitably, at least one of the monomers used in the interfacial polymerisation reaction should possess concavity, resulting in a network polymer with interconnected nanopores and a membrane with enhanced permeability. The support membrane may be optionally impregnated with a conditioning agent and may be optionally stable in organic solvents, particularly in polar aprotic solvents. The top layer of the composite membrane is optionally capped with functional groups to change the surface chemistry. The composite membrane may be cured in the oven to enhance rejection. Finally, the composite membrane may be treated with an activating solvent prior to nanofiltration.
Owner:IP2IPO INNOVATIONS LTD

Method of fabricating nano-structured surface and configuration of surface enhanced light scattering probe

A method to fabricate an optical scattering probe and the method includes the steps of a) depositing an conductive layer on a substrate followed by depositing a noble metal layer on top of the conductive layer and then an aluminum layer on top the noble metal layer; b) anodizing the aluminum layer to form a porous aluminum oxide layer having a plurality of pores; and c) etching the plurality of pores through the aluminum oxide layer and the noble metal layer for forming a nano-hole array. In a preferred embodiment, the step of etching the plurality of pores through the aluminum oxide layer and the noble metal layer further comprising a step of widening the pores followed by removing the aluminum oxide layer for forming a plurality of noble metal column on top of the conductive layer.
Owner:OPTOTRACE TECH

Nanometric Device for the Measurement of the Conductivity and Quantum Effects of Individual Molecules and Methods for the Manufacture and Use Thereof

A nanometric device is disclosed for the measurement of the electrical conductivity of individual molecules and their quantum effects having: a substrate surmounted by, in order, a barrier to diffusion layer, an electrically conductive layer, a “bounder” layer and an electrically insulating layer; and a suitable miniaturized probe; wherein the “bounder” layer and the electrically insulating layer have at least one nanometric pore formed within, the base of which consists of the electrically conductive layer. A method for the production of a nanometric device for the measurement of the electrical conductivity of individual molecules and their quantum effects, and a method for the measurement of the electrical conductivity and quantum effects of a molecule of interest, are also disclosed.
Owner:CONSIGLIO NAT DELLE RICERCHE

Crosslinked hyperbranched polyalcohol composite nano filter membrance and method of preparing the same

The invention discloses a crosslinking hyper branched polymer composite nanofiltration membrane as well as the preparation method thereof. The crosslinking hyper branched polymer composite nanofiltration membrane is prepared by taking an ultrafiltration membrane as a basement membrane and crosslinking hyper branched polymer as a selecting layer through hyper branched polymer and the interfacial polymerization of polybasic acid, polybasic acyl chloride, polybasic anhydride and polybasic amine; and the interfacial polymerization takes the mixed solution of water and ethanol as the water phase and n-hexane, n-heptane or n-octane as the organic phase. As the hyper branched polymer has the spheroidal structure, a plurality of nano-voids exist in the interior of the molecule, so as to enable the selecting layer of the crosslinking hyper branched polymer composite nanofiltration membrane to be looser, and leads the nanofiltration membrane to maintain high flux and retention rate under the lower operating pressure. The nanofiltration membrane can be used in the fields of medicament, foodstuff, environmental protection, etc. The composite nanofiltration membrane is applicable to the separation and the condensation of high valence ions, low valence ions, neutral particles, drugs, food additives, etc.
Owner:ZHEJIANG UNIV

Directed Assembly of Carbon Nanotubes and Nanoparticles Using Nanotemplates With Nanotrenches

The present invention provides methods and tools for directed assembly of nanoelements across a large area using a nanosubstrate. The nanosubstrate has a substrate layer, an adhesive layer, a conductive layer, and an insulating layer that is interrupted by one or more nanotrenches or nanowells having a width of at least 20 nm. The nanosubstrate allows the rapid assembly of linear assemblies and arrays of single walled carbon nanotubes and nanoparticles by DC electrophoresis. The density of nanoelements assembled can be controlled by varying the voltage and trench size. Functionalized nanoparticles can be assembled into arrays useful, e.g., as biosensors.
Owner:NORTHEASTERN UNIV

Flat panel display and method for manufacturing the same

The present invention relates to a flat panel display having high picture quality, high flexibility and high flex-resistance. Specifically, the present invention provides a flat panel display having a plurality of pixels arranged in a matrix shape on a substrate, each of the plurality of pixels comprising a thin film transistor having a channel region containing nanowire, nanorod, nanoribbon, or nanotube, and a display element driven by the thin film transistor. Here, an axial direction of the nanowire, nanorod, nanoribbon, or nanotube is in the same direction as the source-drain direction of a channel region and the flat panel display can be bent so as to intersect with the source-drain direction.
Owner:PANASONIC CORP

Metal Oxide Nanoporous Material, Coating Composition to Obtain the Same, and Methods of Manufacturing Them

A metal oxide nanoporous material comprises two or more kinds of first metal oxides selected from the group consisting of alumina, zirconia, titania, iron oxide, rare-earth oxides, alkali metal oxides and alkaline-earth metal oxides. The metal oxide nanoporous material has nanopores, each with a diameter of 10 nm or smaller, in which the metal oxides are dispersed homogeneously in the wall forming the nanopores.
Owner:TOYOTA CENT RES & DEV LAB INC

Ceria-based mixed-metal oxide structure, including method of making and use

A homogeneous ceria-based mixed-metal oxide, useful as a catalyst support, a co-catalyst and / or a getter, is described. The mixed-metal oxide has a relatively large surface area per weight, typically exceeding 150 m<2> / g, a structure of nanocrystallites having diameters of less than 4 nm, and including pores larger than the nanocrystallites and having diameters in the range of 4 to about 9 nm. The ratio of the pore volumes, VP, to skeletal structure volumes, VS, is typically less than about 2.5, and the surface area per unit volume of the oxide material is greater than 320 m<2> / cm<3>, such that the structural morphology supports both a relatively low internal mass transfer resistance and large effective surface area for reaction activity of interest. The mixed metal oxide is made by co-precipitating a dilute metal salt solution containing the respective metals, which may include Zr, Hf, and / or other metal constituents in addition to Ce, replacing water in the co-precipitate with a water-miscible low surface-tension solvent, and relatively quickly drying and calcining the co-precipitate at moderate temperatures. A highly dispersive catalyst metal, such as Pt, may be loaded on the mixed metal oxide support from a catalyst-containing solution following a selected acid surface treatment of the oxide support. The mixed metal oxide, as catalyst support, co-catalyst or getter, is applied in various reactions, and particularly water gas shift and / or preferential oxidation reactions as associated with fuel processing systems, as for fuel cells and the like.
Owner:INT FUEL CELLS

Light emitting diode and manufacturing method thereof

A technique of ensuring compatibility between the method of improving the light extraction efficiency by roughening the surface of a LED structure, and the method of avoiding the adverse effect of a low-cost electrode pad ((1) forming a current distribution layer by a transparent conductive film made of metal or metal oxide, and (2) forming a flip chip structure). A light emitting diode comprises at least an n-type semiconducting layer, an active layer composed of 30 or less quantum well layers, and a p-type semiconducting layer provided on a substrate, wherein the surface of the semiconductor lamination structure contains a flat portion and a plurality of bores. In this case, the in-plane coverage rate ((the area of the bore opening / surface area)×100) of the plurality of the bores is 10% or more without exceeding 85%; the opening of the bore has a diameter of 100 nm or more without exceeding 4000 nm; the depth of the bore is smaller than the distance between the active layer and the flat portion; and the density of the plurality of the bores expressed in terms of number of bores is 8×105 per / cm2 or more without exceeding 1.08×1010 per / cm2.
Owner:SUMITOMO CHEM CO LTD

Nano-pore electric sensor

The invention discloses a nano-pore electric sensor. The nano-pore electric sensor comprises a baseplate, first insulating layers, symmetrical electrodes, electric contact layers, second insulating layers and nano-pores. The first insulating layers and the symmetrical electrodes are sequentially arranged on the baseplate; the electric contact layers are arranged on the first insulating layers and the edges of the symmetrical electrodes; the second insulating layers are arranged on the symmetrical electrodes; and the nano-pores are arranged in the centers of the baseplate, the first insulating layers, the symmetrical electrodes and the second insulating layers. The thickness of each nano-electrode can be controlled within the range from 0.35 to 0.7nm to meet the requirement on resolution for detecting the electric character of a single base group in single-chain DNA, thereby being suitable for the low-cost and fast electronic gene sequence test. The nano-pore electric sensor solves the technical problem for integrating the nano-electrodes in the nano-pores, and the method for preparing the nano-electrodes is simple.
Owner:ZHEJIANG UNIV

Non-polar iii-v nitride material and production method

A method for growing flat, low defect density, and strain-free thick non-polar III-V nitride materials and devices on any suitable foreign substrates using a fabricated nano-pores and nano-network compliant layer with an HVPE, MOCVD, and integrated HVPE / MOCVD growth process in a manner that minimum growth will occur in the nano-pores is provided. The method produces nano-networks made of the non-polar III-V nitride material and the substrate used to grow it where the network is continuous along the surface of the template, and where the nano-pores can be of any shape.
Owner:QUANTUM NIL LTD +1

Layer combination controllable carbon material with nano pole of different scale, preparation method and application

InactiveCN101054171AEfficient ion transport capabilityControllable ratioScale structureHigh energy
The invention relates to a method for design advanced materials with nano-scaled structure and techniques for preparing same. In particular, the invention relates to a carbon material capable of controllable laminated combination with the nano-holes of variable sizes and preparation and application thereof. The method comprises the steps of: preparing metal oxide sol in the alkali solution system, which is then mixed with an alcohol solution of an alcohol-soluble resin; the oxide sol being used as the template and water being the resin precipitation agent during the process to directly prepare resin / oxide sol composite system. After solvent removal, carbonization, activation and template removal processes, the carbon material with laminated nano-holes combination is prepared which is of controllable micro-holes proportion, controllable medium-holes aperture and proportion, controllable big-holes aperture and propotion and concentrated distribution of medium-holes and big-holes apertures. The carbon material capable of controllable laminated combination with the nano-holes of variable sizes prepared in the invention is characterized in laminated holes structure, excellent ion transfer performances and high electrochemical active specific surface area and the material is expected to be used as high energy density high power density electrochemical capacitor used electrode material.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Aerogel core material capsule, paint prepared from same and preparation method of paint

InactiveCN105363396AAvoid destructionHigh surface area for strong adsorptionCoatingsMicroballoon preparationThermal insulationFilm-forming agent
The invention relates to an aerogel core material capsule, paint prepared from the same and a preparation method of the paint, in particular to the paint which is prepared by conducting encapsulation on aerogel particles through a suspension coating method and adding a film forming agent, reinforcement powder, function powder and an additive with the capsule, with aerogel particles as the core material, as the main thermal insulation component, and has the nanometer porous structure. Encapsulation is conducted on aerogel particles through the suspension coating method, it is avoided that water or other reagents permeate aerogel nano-pore particles to generate capillary force and damage porous structures, and therefore the paint of the complete nano-pore structure is prepared. The prepared paint has excellent thermal insulation performance and is easy to operate, low in production cost, green, environmentally friendly, safe, capable of being applied to thermal insulation and corrosion prevention of devices such as hearths, pipelines, valves and storage tanks in the fields of aviation and military, metallurgy forging, petroleum refining, electric power, ships and the like, and also capable of being used for heat preservation and thermal insulation in the field of construction.
Owner:浙江圣润纳米科技有限公司

High-liquid absorbing rate micro-nano structure polymer electrolyte membrane and preparation method thereof

The invention discloses a preparation method of a high-liquid absorbing rate micro-nano structure polymer electrolyte membrane, wherein the membrane is prepared by polymer material being packed on a support frame. The method comprises the following steps of: by being processed, the polymer membrane has a micro-nano structure, forms holes with micron level and nanometer level, and forms a netty distribution hole structure with the nanometer holes of the support frame; and the polymer which is crossly linked layer by layer is packed on the special support frame to form a special netty micro-nano structure polymer electrolyte membrane. The polymer membrane of the micro-nano structure can absorb large numbers of electrolyte, greatly increase liquid-absorption rate, and improve the affinity of diaphragm to the electrolyte; the netty micro-nano structure leads the electrolyte to be kept in the membrane well, leads lithium ion in the polymer electrolyte membrane to be evenly distributed, leads the concentration to be to balanced, and lead the current density in the battery to be evenly when discharging electricity; and the special support frame guarantees the mechanical capability of the membrane. The preparation technology of the polymer electrolyte membrane has simple route and easily obtained raw material, can be operated under a normal condition, and does not need harsh production environment. The polymer lithium ion battery prepared by the membrane has good electrochemistry capability.
Owner:CHANGSHA HIGH TECH INDAL DEV ZONE CAISHENG NEW ENERGY TECH

Lubricating oil composition for reducing friction comprising nanoporous particles

The present invention provides a lubricating oil composition for reducing a friction coefficient adjacent to the surface of being subjected to lubrication. In particular, the present invention provides nanoporous particles capable of being dispersed in a lubricating oil composition comprising base oil having a lubricant viscosity. Since the nanoporous particles having nano-sized, oil soluble pores according to the present invention reduces a friction coefficient, and in the long term, gradually releases an effective ingredient, the lubricating oil composition comprising the same of the present invention can act as a reducing agent for reducing friction for a long period of time, and thereby, exhibit excellent lubricant effects.
Owner:SK益动株式会社

Microwell arrays with nanoholes

InactiveUS20060240543A1Low-noise electrical measurementWell-controlled high-resolution deliveryBioreactor/fermenter combinationsBiological substance pretreatmentsEngineeringSilicon chip
A device for conducting parallel analysis or manipulation of multiple cells or biomolecules is disclosed. In one embodiment, the device comprises a silicon chip with a microwell, and at least one membrane suspended at the bottom opening of the microwell. The suspended portion of the membrane defines a nanohole that provides access to the material on the other side of the membrane.
Owner:UNIV OF WASHINGTON

Nano-pore SiO2 aerogel thermal insulation composite material and preparation method thereof

The invention discloses a nano-pore SiO2 aerogel heat-insulating composite material and a preparation method thereof. The nano-pore aerogel heat-insulating composite material comprises SiO2 aerogel, an infrared opacifier and reinforced fibers. The preparation method comprises: mixing silicasol and indium-tin oxide ITO nano alcohol slurry or nano composite alcohol slurry of ITO and TiO2 through supersonic wave action, mixing the mixture and the reinforced fibers, directly pouring the mixture into a die to form a wet gel complex, and performing supercutical fluid drying. The material has good heat transfer function and good obstructing function on solid heat conduction, air heat convection and infrared radiation heat conduction, simultaneously has good hydrophobicity, simple technique, low cost and wide application scope, has the mechanical strength reaching more than 1.2 MPa, and can be used in situations with higher heat protection requirement in the fields of avigation, spaceflight, military affairs and domestic use.
Owner:CHANGSHA XINGNA AEROGEL

Preparation method of modified aerosil-based composite phase-change material

The invention discloses a preparation method of a modified aerosil-based composite phase-change material. The preparation method includes the steps that a modified aerosil carrier material is prepared first, prepared modified aerosil is placed into a prepared phase-change material solution after being subjected to vacuum drying, a phase-change core material is adsorbed based on the large specific area and the nanopore structure of the modified aerosil carrier material, and after drying, the modified aerosil-based composite phase-change material with a shaping effect is obtained. The preparation method has the advantages that the novel modified aerosil-based composite phase-change material is developed; the prepared modified aerosil-based composite phase-change material can effectively prevent leakage, corrosion and other problems, the loading capacity of the porous phase-change material can be improved, and the service life of the porous phase-change can be prolonged; the method just needs mild reaction conditions and is simple in process, short in period and suitable for industrial production.
Owner:南京逸柔蒂雯新材料科技有限公司

Electrical double layer capacitive devices and methods of using same for sequencing polymers and detecting analytes

Provided according to some embodiments of the present invention are electrical double layer (EDL) capacitive devices that include an insulating substrate defining a nanopore therethrough; a nanopore electrode exposed in a portion of the nanopore; and an electrolyte in contact with the nanopore electrode. Also provided are methods of using EDL capacitive devices according to embodiments of the invention to sequence polynucleotides or other polymers and / or to detect analytes.
Owner:CLEMSON UNIV RES FOUND

Preparation method of bionic artificial bone with multistage [micrometer/nanometer] pore structure

InactiveCN103462729APrecise control over distributionPrecise Control of ConnectivityBone implantCorrosionAdhesion process
The invention relates to a preparation method of a bionic artificial bone with a multistage [micrometer / nanometer] pore structure. The method is characterized by the following steps of: realizing 150-800 mum gradient through pores by selective laser sintering (the diameter of the light spot is micrometer scale); mixing and performing oxygenolysis on a small amount of high polymer microballoons in the sintering process to form 10-100 mum random spherical pores; finally obtaining the bionic artificial bone which has an three-dimensional hierarchical pore structure similar to that of a natural bone by a method of obtaining irregular pores in tens of nanometer surfaces by a corrosion process. In the invention, according to the requirement of an implanting position, the distribution, connectivity and the like of the gradient through pore can be accurately controlled by adjusting sintering process parameters; the shape, size and the like of the spherical pores can be controlled by precisely controlling the furnace temperature curve and high polymer particle properties; the size, quantity and the like of the nanometer pores can be controlled by controlling the corrosion liquid concentration and corrosion time. The preparation method disclosed by the invention has an important significance in creating a microenvironment beneficial to cell adhesion, proliferation and function exertion, improving forming of new bones, and increasing healing of bones.
Owner:CENT SOUTH UNIV

Method for preparing nano pore composite humidity adjusting material

InactiveCN101928438AQuickly adjust relative humidityLarge moisture absorption capacityOther chemical processesHigh humidityNano size
The invention discloses a method for preparing a nano pore composite humidity adjusting material. An organic macromolecular material, a natural macromolecular material and an inorganic porous material are compounded into the humidity adjusting material by synthesis so as to absorb the advantages of various humidity adjusting materials and improve the wet capacity and humidity adjusting performance of the synthesized material; and a large amount of nano-scale pore structures are formed on the material through the synthesis process so as to further improve the humidity absorbing and discharging performance of a product. Compared with the prior art, the method has the advantages that: 1) the material has high humidity absorbing and discharging capacity and high humidity absorbing and discharging response speed, and can efficiently and quickly adjust the relative humidity of a microenvironment; 2) the material is renewable and very convenient to reuse; 3) the production process and the production equipment are simple and easy for industrialization; and 4) the production process is environmentally-friendly.
Owner:ZHEJIANG SCI-TECH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products