Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1068results about How to "Reduce defect density" patented technology

Semiconductor substrate made of group III nitride, and process for manufacture thereof

To provide a semiconductor substrate of a group III nitride with low defect density and little warp, this invention provides a process comprising such steps of: forming a GaN layer 2 on a sapphire substrate 1 of the C face ((0001) face); forming a titanium film 3 thereon; heat-treating the substrate in an atmosphere containing hydrogen gas or a gas of a compound containing hydrogen to form voids in the GaN layer 2; and thereafter forming a GaN layer 4 on the GaN layer 2'.
Owner:SUMITOMO CHEM CO LTD

Lateral growth method for defect reduction of semipolar nitride films

A lateral growth method for defect reduction of semipolar nitride films. The process steps include selecting a semipolar nitride plane and composition, selecting a suitable substrate for growth of the semipolar nitride plane and composition, and applying a selective growth process in which the semipolar nitride nucleates on some areas of the substrate at the exclusion of other areas of the substrate, wherein the selective growth process includes lateral growth of nitride material by a lateral epitaxial overgrowth (LEO), sidewall lateral epitaxial overgrowth (SLEO), cantilever epitaxy or nanomasking.
Owner:JAPAN SCI & TECH CORP

Technique for perfecting the active regions of wide bandgap semiconductor nitride devices

InactiveUS20050164475A1Enhanced thicknessLow reverse bias leakage currentPolycrystalline material growthFrom solid stateEngineeringWideband
This invention pertains to e lectronic / optoelectronic devices with reduced extended defects and to a method for making it. The method includes the steps of depositing a dielectric thin film mask material on a semiconductor substrate surface; patterning the mask material to form openings therein extending to the substrate surface; growing active material in the openings; removing the mask material to form the device with reduced extended defect density; and depositing electrical contacts on the device.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Dry clean method instead of traditional wet clean after metal etch

A dry cleaning method for use in semiconductor fabrication, including the following steps. An etched metallization structure is provided and placed in a processing chamber. The etched metallization structure is cleaned by introducing a fluorine containing gas / oxygen containing gas mixture into the processing chamber proximate the etched metallization structure without the use of a downstream microwave while applying a magnetic field proximate the etched metallization structure and maintaining a pressure of less than about 50 millitorr within the processing chamber for a predetermined time.
Owner:PROMOS TECH INC +2

Non-polar iii-v nitride semiconductor and growth method

A method for growing flat, low defect density, and strain-free thick non-polar III-V nitride materials and devices on any suitable foreign substrates using a fabricated nanocolumns compliant layer with an HVPE growth process is provided. The method uses a combination of dry and wet etching to create nanocolumns consisting of layers of non-polar III nitride material and other insulating materials or materials used to grow the non-polar III-V nitride materials.
Owner:IQE

Production of semiconductor devices

A method of producing a layered semiconductor device comprises the steps of: (a) providing a base comprising a plurality of semiconductor nano-structures, (b) growing a semiconductor material onto the nano-structures using an epitaxial 5 growth process, and (c) growing a layer of the semiconductor material using an epitaxial growth process.
Owner:QUANTUM NIL LTD +1

High-conductivity graphene/copper-based layered composite material and preparation method thereof

InactiveCN106584976AImprove utilization efficiencyTo overcome the deficiency of reducing resistanceLaminationLamination apparatusSingle crystalCvd graphene
The invention discloses a high-conductivity graphene/copper-based layered composite material and a preparation method thereof. The composite material is characterized in that the composite material is of a layered structure formed by alternate combination of chemical vapor deposition (CVD) graphene and a copper substrate, the copper substrate is in a single-crystal state in the thickness direction in layers, and the (111) crystal face high-orientation effect is achieved. The method includes the following steps that (1) graphene is grown on the upper surface and the lower surface of the platy copper substrate through a CVD technology and the copper substrate is induced to achieve preferred orientation along a (111) crystal face, and the sandwich-shaped graphene-cladding copper substrate is obtained through preparation; and (2) multiple pieces of graphene-cladding copper substrates are subjected to hot pressed sintering densification to form the high-conductivity graphene/copper-based layered composite material. The layered composite material prepared by the method is high in conductivity, higher than pure silver in conduction level and easy to produce and can be used as various conduction materials.
Owner:SHANGHAI JIAO TONG UNIV

Semiconductor light-emitting device and method for manufacturing the same

Semiconductor light emitting device and methods for its manufacture comprises a plurality of textured district defined on the surface of the substrate. The initial inclined layer deposition serves to guide the extended defects to designated gettering centers in the trench region where the defects combine with each other. As a result, the defect density in the upper section of the structure is much reduced. By incorporating a blocking mask in the structure, the free propagation of extended defects into the active layer is further restricted. The present invention is useful in the fabrication of semiconductor light emitting devices in misfit systems.
Owner:LEXINGTON LUMINANCE

Method for manufacturing of a mask blank for EUV photolithography and mask blank

InactiveUS20060008749A1Difficult and costly to produceGenerate and manipulate easilyNanoinformaticsVacuum evaporation coatingExtreme ultravioletConductive coating
The invention relates to a method for manufacturing of a mask blank for extreme ultraviolet (EUV) photolithography, comprising the steps of: providing a substrate having a front surface and a back surface; depositing a film comprising tantalum nitride (TaN) on said front surface of said substrate for absorbing EUV light used during a photolithographic process; and depositing a conductive coating on said back surface of said substrate. Preferably, ion beam sputtering is used for depositing the film comprising tantalum nitride (TaN) and / or the conductive coating on the back surface of the substrate. Preferably, Xenon is used as a sputter gas for ion beam sputtering. Another aspect of the present invention relates to a mask blank for extreme ultraviolet (EUV) photolithography.
Owner:SCHOTT AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products