Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2293results about How to "Improve lighting efficiency" patented technology

Aromatic amine derivative and organic electroluminescence device using the same

An aromatic amine derivative with a specific structure having a carbazole skeleton to which a diarylamino group bonds via a bonding group. An organic electroluminescence device which is composed of one or more organic thin film layers including at least one light emitting layer sandwiched between a cathode and an anode, wherein at least one of the organic thin film layers contains the aromatic amine derivative singly or as its mixture component. Organic electroluminescence devices with enhanced efficiency of light emission and a compound realizing the devices are provided.
Owner:IDEMITSU KOSAN CO LTD

Vehicular headlamp

A vehicular headlamp includes at least one a light source irradiating visible light and a lens allowing the visible light from the light source to pass through to forward of a vehicle. The light source and the lens are mounted in a rotating element. Alternatively, the vehicular headlamp includes at least one a light source irradiating visible light, and a mirror mounted on a rotating element and arranged to reflect the visible light from the at least one light source to forward of a vehicle. The vehicular headlamp also includes a scanning actuator for reciprocatingly rotating the rotating element so as to form a light distribution pattern forward of the vehicle and a light distribution control portion for controlling the scanning actuator such that a portion of the light distribution pattern is relatively bright.
Owner:KOITO MFG CO LTD

Light-emitting device and process for producing thereof

The light-emitting device includes a light-emitting element chip; a package having a first recessed portion thereon, in which the light-emitting chip is disposed; a transparent flexible member covering at least the recessed portion; and a transparent rigid member disposed on or above the transparent flexible member. The package has at least a first front surface extending at least outwardly above the first recessed portion; a second front surface extending outwardly above the first front surface; and a third surface as the outside of the package extending outwardly above the second front surface. The rigid member is disposed in the outline of the second front surface with at least three points of contact. The flexible member is continuously provided along the first front surface, the second front surface and the back surface of the rigid member. This light-emitting device is capable of improved reliability without deteriorating its optical characteristics.
Owner:NICHIA CORP

High brightness gallium nitride-based light emitting diode with transparent conducting oxide spreading layer

A new transparent conducting oxide (TCO), which can be expressed as AlxGa3−x−yIn5+ySn2−zO16−2z; 0≦x<1, 0<y<3, 0≦z<2, has been used to improve the brightness and current spreading in GaN base LED process. The optical properties of this system are superior to regular Ni / Au transparent conducting layer in blue-green region, and the new Al2O3—Ga2O3—In2O3—SnO2 system is able to increase the brightness at 1.5˜2.5 time to compare to regular process. Furthermore, the new transparent conducting oxide thin film has the highest conductivity, which is better than the Ni / Au transparent conducting thin film.
Owner:ARIMA OPTOELECTRONICS

Backlight device and liquid crystal display apparatus

Disclosed is a light transmitting liquid crystal display apparatus used with advantage with a television receiver having a large-sized display not less than 30 inch. A backlight section (3) sending out illuminating light is formed by a plural number of rows made up of many light emitting units (15) arranged on the back surface of a liquid crystal display panel (8). Each light emitting unit includes many LED units (18) mounted on an interconnection substrate (17) and is mounted in this state on a heat dissipating plate (28). A reflecting section (6) for reflecting the light radiated from each LED is formed by a large number of reflective sheet pieces (27), assembled from one heat emitting unit to another, and a reflective plate (26) secured to reflecting plate supports (40) formed on the heat dissipating plate.
Owner:SATURN LICENSING LLC

Light excitation-diffusion sheet for backlight unit and backlight unit for liquid crystal display using the same

A light excitation diffusion sheet for a backlight unit adapted to absorb a portion of light emitted from a light source of a blue wavelength or a mixed wavelength of a blue wavelength and at least one other wavelength, to emit light at different wavelengths from the light emitted from the light source, and to allow the rest of the light emitted from the light source to penetrate the sheet The light excitation-diffusion sheet comprises a light-exciting material exciting and amplifying the light from the light source and a light-diffusing material scattering and diffusing the light from the light source. The light-exciting material and the light-diffusing material are uniformly distributed in the light excitation-diffusion sheet The use of the light excitation-diffusion sheet enables production of edge light type and direct light type backlight units having diffusion and prism functions, good color purity and improved light efficiency at reduced costs.
Owner:KDT

Authentication of documents and articles by moiré patterns

The present invention relies on the moiré patterns generated when superposing a base layer made of base band patterns and a revealing line grating (revealing layer). The produced moiré patterns comprise an enlargement and a transformation of the individual patterns located within the base bands. Base bands and revealing line gratings may be rectilinear or curvilinear. When translating or rotating the revealing line grating on top of the base layer, the produced moiré patterns evolve smoothly, i.e. they may be smoothly shifted, sheared, and possibly be subject to further transformations. Base band patterns may incorporate any combination of shapes, intensities and colors, such as letter, digits, text, symbols, ornaments, logos, country emblems, etc. . . . . They therefore offer great possibilities for creating security documents and valuable articles taking advantage of the higher imaging capabilities of original imaging and printing systems, compared with the possibilities of the reproduction systems available to potential counterfeiters. Since the revealing line grating reflects a relatively high percentage of the incident light, the moiré patterns are easily apparent in reflective mode and under normal illumination conditions. They may be used for the authentication of any kinds of documents (banknotes, identity documents, checks, diploma, travel documents, tickets) and valuable articles (optical disks, CDs, DVDs, CD-ROMs, packages for medical drugs, bottles, articles with affixed labels).
Owner:ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Method for manufacturing brightness enhancement film of liquid crystal display and structure thereof

InactiveUS7132064B2Manufacturing a plurality of CLC films fast and simplyImprove lighting efficiencyOptical articlesPolarising elementsLiquid-crystal displayBrightness perception
A method for manufacturing a brightness enhancement film of a liquid crystal display and a structure thereof are provided. The method includes: (a) providing a first substrate, (b) forming a first macromolecule liquid crystal on said first substrate, (c) curing a part of said first macromolecule liquid crystal on said first substrate for forming a first light transmitting layer, (d) providing a second substrate, (e) forming a second macromolecule liquid crystal on said second substrate, (f) curing a part of said second macromolecule liquid crystal on said second substrate for forming a second light transmitting layer, (g) combining a non-curing part of said first macromolecule liquid crystal and said second macromolecule liquid crystal for forming a third macromolecule liquid crystal between said first light transmitting layer and said second light transmitting layer, and (h) curing said third macromolecule liquid crystal for forming a third light transmitting layer.
Owner:OPTIMAX TECHNOLOGY CORPORATION

Light emitting diode

AC LED according to the present invention comprises a substrate, and at least one serial array having a plurality of light emitting cells connected in series on the substrate. Each of the light emitting cells comprises a lower semiconductor layer consisting of a first conductive compound semiconductor layer formed on top of the substrate, an upper semiconductor layer consisting of a second conductive compound semiconductor layer formed on top of the lower semiconductor layer, an active layer interposed between the lower and upper semiconductor layers, a lower electrode formed on the lower semiconductor layer exposed at a first corner of the substrate, an upper electrode layer formed on the upper semiconductor layer, and an upper electrode pad formed on the upper electrode layer exposed at a second corner of the substrate. The upper electrode pad and the lower electrode are respectively disposed at the corners diagonally opposite to each other, and the respective light emitting cells are arranged so that the upper electrode pad and the lower electrode of one of the light emitting cells are symmetric with respect to those of adjacent another of the light emitting cells.
Owner:SEOUL VIOSYS CO LTD

Light-modulating element, display element, and exposure element

Subjects for the invention are to provide a light-modulating element having an elevated energy efficiency while preventing a decrease in contrast at low cost without using a display technique employing a waveguide or lightguide plate, and to provide a display element capable of producing high-quality display images and an exposure element capable of exposure treatment.In the invention, the light-modulating element comprises: a total-reflection optical member 2 having such a property that at least part of planar incident light introduced into the light-modulating element is totally reflected at an interface (total reflection plane) 22 of a layer constituted by the light-modulating element and the incident light does not substantially go out through the side opposite to the incident-light introduction side; and light-coupling elements 6 which are disposed on the total reflection plane 22 side of the total-reflection optical member 2 and serve to selectively couple with the incident light and take out the same from the total reflection plane 22.
Owner:FUJIFILM HLDG CORP +1

Sequential projection color display using multiple imaging panels

A color projection display device may include SLMs or other panels. One embodiment includes a device for displaying a color image including first and second sequences of temporally-integrateable primary color image components, the device also includes first (209) and second (206) SLM panels (604, 606), first and second driving circuitry, and first through fourth polarizing beam spitters.
Owner:SAMSUNG DISPLAY CO LTD

Light emitting diode with a quasi-omnidirectional reflector

A light emitting diode with a quasi-omnidirectional reflector comprises a luminescent gel which is coated surrounding a UV light LED chip and a quasi-omnidirectional reflector which is disposed above the luminescent gel. The quasi-omnidirectional reflector is a wild angle cut-off filter which is made by a cooperation of a method for an optical film coating and a property of a total reflection. According to the property of the optical film coating, a light with an incident angle smaller than a critical angle can be reflected, such that a light form the LED chip is confined in the luminescent gel, which makes the luminescent material is excited as much as possible for improving the conversion efficiency of the light. When this LED chip co-works with different colors of the luminescent gels, different colors of lights are excited and produced.
Owner:IND TECH RES INST

Light guide plate and support unit for the same

The light guide plate 32 has a light receiving portion 36 on one side thereof to receive light emitted by the LED 24 and a flexible light guide body 35 for transforming the light received by the light receiving portion 36 into planar light. The light guide body 35 is arranged along the liquid crystal panel 23 and has a plurality of light scattering portions 30 arranged on an outer surface thereof in a propagation direction of light emitted by the LED 24. Since the light guide plate 32 comprises a flexible member and thus can be arranged in a curved shape conforming to the liquid crystal panel 23 having a curved surface portion, the curved surface portion of the liquid crystal panel 23 can be illuminated uniformly. Further, the provision of the light scattering portions 30 can enhance a light reception efficiency and light emission efficiency even if the light guide plate 32 is thin.
Owner:CITIZEN ELECTRONICS CO LTD

Light emitting module, a lamp, a luminaire and a display device

A light emitting module 150 emits light through a light exit window 104 and comprises a base 110, a solid state light emitter 154, 156 and a partially diffusive reflective layer 102. The base 110 has a light reflective surface 112 which faces towards the light exit window 104. The light reflective surface 112 has a base reflection coefficient Rbase which i defined by a ratio between the amount of light that is reflected by the light reflective surface and the amount of light that impinges on the light reflective surface. The solid state light emitter 154, 156 emits light of a first color range 114, comprises a top surface 152, 158 and has a solid state light emitter reflection coefficient R_SSL which is defined by a ratio between the amount of light that is reflected by the solid state emitter 154, 156 and the amount of light that impinges on the top surface 152, 158 of the solid state light emitter 154, 156. The light exit window 104 comprises at least a part of the partially diffusive reflective layer 102. A solid state light emitter area ratio ρSSL is defined as the ratio between the area of the top surface of the at least one solid state light emitter and the area of the light reflective surface of the base. A relatively efficient light emitting module is obtained if Rbase>R_SSL+c*(1−R_SSL) and the factor c is 0.2≦c≦1 for 0<ρSSL<0.1, 0.3≦c≦1 for 0.1≦ρSSL≦0.25, and 0.4≦c≦1 for ρSSL>0.25.
Owner:LUMILEDS

Liquid crystal display device

The present invention provides a backlight of a liquid crystal display device having an inclination surface on a light guide plate and preventing a breakage of a liquid crystal panel, wherein light which leaks from the inclination surface is made to return to the light guide plate and the adhesiveness of the light guide plate and a flexible printed circuit board is increased. In a liquid crystal display device having a backlight which radiates light to a liquid crystal panel, LEDs are formed on a light guide plate formed on the backlight as light emitting elements. Between the plurality of light emitting elements, a projecting portion of the light guide plate is formed, and a reflection member is formed on an adhesive sheet which adheres a projection member and a flexible printed circuit board to each other. By arranging the reflective member and the cushion member close to an inclination surface, light from the inclination surface is made to return to a light guide plate side, and an external force from the outside can be alleviated by a cushion member.
Owner:PANASONIC LIQUID CRYSTAL DISPLAY CO LTD

Built-in Heat Diffusion Lamp Body for LED Lamp

A built in beat diffusion lamp body for LED lamp was invented. The purpose of the invention is to solve the difficulties of poor heat conduction and diffusion caused by the small heat diffusion surface of the material of a conventional LED lamp. The lamp body is made of a set of heat diffusion vanes encircling the heat diffusion complex. The vanes and heat diffusion complex are made from Aluminum alloy in a single process of extrusion moulding. The transverse section of the heat diffusion body is volute shaped. The bottom of the heat diffusion complex is fixed to an aluminum board or an aluminum circuit: board by interference fit. The heat generated by the LED elements can be absorbed and diffused by the board, the heat diffusion complex and the surrounding diffusion element. The outward appearance of the heat diffusion lamp body may be shaped into cup, ladder, or cylinder likeness to satisfy the application requirement. The advantages of current invention are: efficient heat absorption, conduction, and diffusion, low cost for manufacturing, and aesthetic appearance.
Owner:HU KAI

Light source device and projector

A light source device adapted to generate an illumination light beam for illuminating an illuminated surface includes a light source adapted to emit a light beam, a light path conversion member adapted to rotate around an axis perpendicular to a center axis of the light beam emitted from the light source to convert a light path of the light beam emitted from the light source, an overlapping illumination element adapted to overlap a light beam emitted from the light path conversion member on the illuminated surface, the overlapping illumination element having an entrance position of the light bream input to the overlapping illumination element varies with time, and a rotating section adapted to rotate the light path conversion member.
Owner:SEIKO EPSON CORP

Opposed terminal structure having a nitride semiconductor element

An opposed terminal structure including a supporting substrate, a first terminal, a nitride semiconductor with a light-emitting layer, and a second terminal. The second terminal forms an opposed terminal structure with the first terminal, which can be formed in a variety of patterns.
Owner:NICHIA CORP

Light-emitting diode device and manufacturing method thereof

A light-emitting diode device includes an epitaxial layer, a current blocking layer and a current spreading layer. The current blocking layer is disposed on one side of the epitaxial layer and contacts with a portion of the epitaxial layer. The current spreading layer is disposed on one side of the epitaxial layer and contacts with at least a portion of the current blocking layer.
Owner:DELTA ELECTRONICS INC

Semiconductor light emitting device and its manufacturing method

Efficiency of leading out light released from an active layer, i.e. the external quantum efficiency, can be improved remarkably by processing a light lead-out surface to have an embossment. A layer containing a p-type dopant like magnesium (Mg) is deposited near the surface of a p-type GaN layer to diffuse it there, and a p-side electrode is made on the p-type GaN layer after removing the deposited layer. This results in ensuring ohmic contact with the p-side electrode, preventing exfoliation of the electrode and improving the reliability.
Owner:SAMSUNG ELECTRONICS CO LTD

Light emitting device and manufacturing method thereof

In a light emitting device, a light emitting element which includes a transparent substrate and a stack of GaN-based compound semiconductor layers formed on the first surface of the transparent substrate is mounted on a lead frame or a printed circuit board so that the transparent substrate is located on the side of the stack of GaN-based compound semiconductor layers opposite to the lead frame or the printed circuit board. The second surface of the transparent substrate opposite to the first surface contains a portion inclined with respect to the first surface. Alternatively, an optical member is arranged in contact with the second surface of the transparent substrate, where a surface of the optical member located on the opposite side to the transparent substrate contains a portion inclined with respect to the first surface of the transparent substrate.
Owner:FUJIFILM HLDG CORP +1

Solid-state lamps with light guide and photoluminescence material

InactiveUS20120140436A1Eliminate optical lossEliminates the optical lossesPlanar light sourcesMechanical apparatusSolid-stateLight guide
A solid-state lamp comprises a light guide having at least one light emitting face and at least one solid-state light source (LED) configured to couple light into the light guide. The lamp further comprises a pattern of light extracting features for promoting emission of light from the light guide wherein the pattern of light extracting features is formed on at least one face of the light guide.
Owner:INTEMATIX

Lighting apparatus using light emitting diode

Disclosed is a light apparatus using light emitting diodes that includes: a base body member having a mounting surface on its one surface; a plurality of inclined block members each of which is mounted on the mounting surface of the base body member and has an inclined surface on one surface thereof; and light emitting diode module members that are mounted on the inclined surfaces of the inclined block members. According to the disclosure, it is possible to easily form various light distributions required for the lighting design by combining the inclined block members and the light emitting diode module members that are mounted on the mounting surfaces of the base body member, and various light distributions can be formed, which makes it possible to improve flexibility in the lighting design and to improve lighting efficiency for an object to be illuminated.
Owner:AMOLUXE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products