Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1533 results about "Biochip" patented technology

In molecular biology, biochips are essentially miniaturized laboratories that can perform hundreds or thousands of simultaneous biochemical reactions. Biochips enable researchers to quickly screen large numbers of biological analytes for a variety of purposes, from disease diagnosis to detection of bioterrorism agents. Digital microfluidic biochips have become one of the most promising technologies in many biomedical fields. In a digital microfluidic biochip, a group of (adjacent) cells in the microfluidic array can be configured to work as storage, functional operations, as well as for transporting fluid droplets dynamically.

Smart disposable plastic lab-on-a-chip for point-of-care testing

InactiveUS20050130292A1None of measures has been particularly successfulRelieve painBioreactor/fermenter combinationsCombination devicesVenous bloodLab-on-a-chip
Disclosed herein is a fully-integrated, disposable biochip for point-of-care testing of clinically relevant parameters. Specifically, in accordance with an embodiment of the present invention, the biochip is designed for POCT (point-of-care-testing) of an array of metabolic parameters including partial pressure of oxygen, Glucose, and Lactate concentration from venous blood samples. The biochip is fabricated on a low-cost plastic substrate using mass manufacturing compatible fabrication processes. Furthermore, the biochip contains a fully-integrated metallic micro-needle for blood sampling. The biochip also uses smart passive microfluidics in conjunction with low-power functional on-chip pressure generators for microfluidic sequencing. The design, configuration, assembly and operation of the biochip are ideally suited for a disposable biochip specifically targeted towards POCT applications.
Owner:UNIVERSITY OF CINCINNATI

Method of making biochips and the biochips resulting therefrom

Methods for preparing a biochip are provided herein wherein the biomolecular probe to be used with the biochip is alternatively bound to a hydrogel prepolymer prior to or simultaneously with polymerization of the prepolymer. In particularly preferred embodiments, a polyurethane-based hydrogel prepolymer is derivatized with an organic solvent soluble biomolecule, such as a peptide nucleic acid probe in aprotic, organic solvent. Following derivatization of the prepolymer, an aqueous solution, for example sodium bicarbonate, preferably buffered to a pH of about 7.2 to about 9.5, is added to the derivatized prepolymer solution to initiate polymerization of the hydrogel. Alternatively, a water soluble biomolecule, such as DNA or other oligonucleotide, is prepared in an aqueous solution and added to the polyurethane-based hydrogel prepolymer such that derivatization and polymerization occur, essentially, simultaneously. While the hydrogel is polymerizing, it is microspotted onto a solid substrate, preferably a silanated glass substrate, to which the hydrogel microdroplet becomes covalently bound. Most preferably the hydrogel microdroplets are at least about 30 mum thick, for example about 50 mum to about 100 mum thick. The resulting biochips are particularly useful for gene discovery, gene characterization, functional gene analysis and related studies.
Owner:BIOCEPT INC

Remote-medical-diagnosis system method

Provided are a remote medical-diagnosis system including: a bio-disc or a biochip performing biological, chemical or biochemical reactions with a sample, and having a barcode or a RF IC; a bioanalytical device analyzing results of reactions performed by the bio-disc or the biochip and including a reader reading the barcode or the RF IC to authenticate the bio-disc or the biochip or recording the measured data to the RF IC regardless of a connection with a remote diagnosis server; a virtual doctor as a software in a user's terminal, the virtual doctor providing a user with guidelines and instructions as how to use the bioanalytical device, and providing the user with a consulting service, a diagnosis unit self-analyzing the measured data using mathematical calculations and outputing results of a diagnosis; a user's terminal providing the user with a consulting service from a medical expert or a virtual doctor; a medical expert's terminal providing the user with a consulting service; and a remote diagnosis server connecting the user with the medical expert during periodic medical consultations, connecting the user with the virtual doctor during non-periodic medical consultations, blocking connection between the user and the virtual doctor if a periodic medical consultations term has elapsed; and a method of performing the remote medical-diagnosis.
Owner:PRECISIONBIOSENSOR INC

Chemiluminescence-based microfluidic biochip

InactiveUS6949377B2Accurate and reproducible resultSimple and rapid and POCT applicationBioreactor/fermenter combinationsBiological substance pretreatmentsPositive pressureBiochip
The disclosure describes how to use luminescence detection mechanism, move microfluid, and control multiple-step biochemical reactions in closed confined microfluidic biochip platform. More particularly, a self-contained disposable biochip with patterned microchannels and compartments having storage means for storing a plurality of samples, reagents, and luminescent substrates. At least one external microactuator in the biochip system produces positive pressure and automates multiple-step reactions in microfluidic platforms for clinical chemistry, cell biology, immunoassay and nucleic acid analysis. The method comprises the steps of transferring sequentially at least one of samples, reagents, and then luminescent substrate from compartments through microchannels to reaction sites. The luminescent substrates react with probes to form a probe complex resulting into luminescence, which is detected by an optical detector.
Owner:HO WINSTON Z

Biochip devices for ion transport measurement, methods of manufacture, and methods of use

The present invention provides biochips for ion transport measurement, ion transport measuring devices that comprise biochips, and methods of using ion transport measuring devices and biochips that allow for the direct analysis of ion transport functions or properties. The present invention provides biochips, devices, apparatuses, and methods that allow for automated detection of ion transport functions or properties. The present invention also provides methods of making biochips and devices for ion transport measurement that reduce the cost and increase the efficiency of manufacture, as well as improve the performance of the biochips and devices. These biochips and devices are particularly appropriate for automating the detection of ion transport functions or properties, particularly for screening purposes.
Owner:AVIVA BIOSCI

Apparatus for microfluidic processing and reading of biochip arrays

A method and a device for detecting an analyte, including a substrate having a chemically selective surface; and a fluidic system disposed on the substrate, the manifold having at least one fluid path in communication with at least a discrete region of the surface, wherein the one fluid path and the discrete region together define a contained sample region on the surface. The fluidic system has a removable portion, wherein the removal of the removable portion of the fluidic system renders the discrete region directly interrogatable by a surface-based analytical tool.
Owner:BIO RAD LAB INC

Device for supporting chromophore elements

A device for supporting chromophore elements suitable for emitting fluorescence in response to light excitation, the device comprising a substrate having a surface layer carrying the chromophore elements, forming a planar waveguide, and containing photoluminescent constituents which emit guided luminescence at the excitation wavelength(s) of the chromophore elements when they are excited by primary excitation light illuminating the surface layer. The invention is particularly applicable to biochip type devices.
Owner:GENEWAVE SAS

Apparatus including ion transport detecting structures and methods of use

The present invention recognizes that the determination of ion transport function or properties using direct detection methods, such as whole cell recording or single channel recording, are preferable to methods that utilize indirect detection methods, such as FRET based detection system. The present invention provides biochips and other fluidic components and methods of use that allow for the direct analysis of ion transport function or properties using microfabricated structures that can allow for automated detection of ion transport function or properties. These biochips and fluidic components and methods of use thereof are particularly appropriate for automating the detection of ion transport function or properties, particularly for screening purposes.
Owner:AVIVA BIOSCI

Interactive transparent individual cells biochip processor

An Interactive Transparent Individual Cells Biochip Processor (ITICBP) device is described, which is useful for assessing a single, individual living cell at identifiable location or assessing group of cells each at identifiable location.
Owner:BAR ILAN UNIV

Microwell biochip

Microwell biochips (11) are formed from a thin flat plate (13) of polymeric material having a plurality of regularly spaced holes (15) that extend completely therethrough and create microwells. The lower end of each hole is closed by a microporous, hydrophobic, polymeric membrane (17) laminated to the undersurface of the plate which retains an aqueous test solution in the wells until a vacuum is applied to the undersurface thereof to effect draining of the solution and of any wash solution that might be subsequently added. A spot of polymerizing isocyanate-functional hydrogel is applied generally centrally to the porous membrane surface at the bottom of each well in a manner so as to cover only a minor portion of the surface and out of contact with the well sidewalls, thus leaving substantial surface area through which drainage can be readily effected. Biological capture agents are associated with the polymerizing hydrogel so as to become immobilized as a part thereof.
Owner:BIOCEPT INC

Biochip for High-Throughput Screening of Circulating Tumor Cells

Embodiments in accordance with the present invention relate to the use of effusive filtration to segregate tumor cells from a sample of bodily fluid. In one embodiment, fluid containing a cell is flowed down a channel having a filtration medium present along at least one side wall. The tumor cell is captured when the fluid passes through the filtration medium. Accumulated pressure on the captured tumor cell is reduced by allowing the fluid that has passed through the filtration medium to re-enter the channel. In a particular embodiment, the filtration medium may comprise side wall apertures having a width smaller than that of the cell, with downstream apertures allowing re-entry of the fluid into the channel.
Owner:UNIV OF WASHINGTON

Precision vibration damping assembly and vibration damping platform composed of the assembly

The invention discloses a precision damping component and a damping platform composed of the precision damping component, and the damping platform has damping function and positioning function along a Z direction. The precision damping component comprises a passive damping part, an active damping actuator and an external frame. The passive damping part is a piston rod with a structure of double cavities, an air pocket and a pressure cavity are respectively positioned in the two cavities, and the air pocket has larger longitudinal bracing power and lower rigidity, and can isolate the vibration of attenuation high frequency. The active damping actuator is a linear voice coil motor connected in parallel with the passive damping part, and applies acting force to a passive object according to the vibration condition and location information of the controlled object, so as to drive the controlled object to move to a designated position and compensate the vibration. The damping platform composed of at least three precision damping components has the functions of vibration damping with a plurality of degrees of freedom, accurately positioning along the Z direction, focusing and leveling. The precision damping component and the damping platform can be used in the apparatus with precision damping requirements such as mask aligners, ultra-precision numerically-controlled machine tools, biochip scanners and the like.
Owner:HUAZHONG UNIV OF SCI & TECH

Dendrimer-based DNA extraction methods and biochips

The present invention provides a dendrimer-based biochip, wherein a flow channel through which a solution containing biopolymer molecules is flowed is formed in the substrate of the biochip, a plurality of dendrimer molecules one end of each of which is bound to the walls of the flow channel are formed thereon, and probe biopolymer or antibody molecules are bound to the tips of the dendrimer molecules so that, if the probe biopolymer molecules are bound, then target biopolymer molecules can be captured by means of a complementary combination and, if the antibody molecules are bound, then protein can be extracted by means of antigen-antibody reaction, whereby biopolymers can be retrieved in a highly efficient manner.
Owner:YOKOGAWA ELECTRIC CORP +1

Microarray detector and methods

A detector for optical analysis of a biochip determines the focal position of a plurality of analytes on the biochip using one or more registration markers on the biochip, wherein the analytes and the registration marker are illuminated by different light sources. Therefore, contemplated configurations will significantly reduce overall focusing time and automate proper positioning of the biochip, while allowing to determine a focal position without photobleaching or other undesirable effects on optically labile compounds. Thus, automated analyses can be performed without manual user intervention.
Owner:AUTOGENOMICS

Methods for rapid multiplexed amplification of target nucleic acids

ActiveUS20090023603A1Monitor and accurately controlHigh speedBioreactor/fermenter combinationsHeating or cooling apparatusPrimary stutteringGuideline
A fast, multiplexed PCR system is described that can rapidly generate amplified nucleic acid products, for example, a full STR profile, from a target nucleic acid. Such systems include, for example, microfluidic biochips and a custom built thermal cycler, which are also described. The resulting STR profiles can satisfy forensic guidelines for signal strength, inter-loci peak height balance, heterozygous peak height ratio, incomplete non-template nucleotide addition, and stutter.
Owner:ANDE CORP

Fully integrated protein lab-on-a-chip with smart microfluidics for spot array generation

Techniques for the fabrication of fully-integrated lab-on-a-chips (or biochips) specifically oriented towards point-of-care detection of biomolecules using immunoassay based detection techniques are disclosed. A primary task for the development of such biochips is the development of techniques to precisely deposit and localize the capture antibody on pre-determined locations over the biochip. The use of selective surface modification, specifically control over the surface energy, to achieve localized adsorption of the capture antibody is disclosed. Another approach, also disclosed, describes the use of smart passive microfluidics to confine the flow of the capture antibody along certain paths of the biochip and thereby control the locations over which the capture antibody is adsorbed. Furthermore, the use of an integrated microlens array as means of enhancing the detection sensitivity of the biochip is also disclosed.
Owner:UNIVERSITY OF CINCINNATI

Reflective substrate and algorithms for 3D biochip

A reflective substrate is used to amplify the photon signal captured from overlying analyte domains containing photon emitters. The reflective substrate provides substantial desired signal amplification of the photon emissions from each domain via interference effects induced in the incident excitation and / or emission energies. A dielectric is interposed between the domains and the reflective surface, which has a thickness such that substantial destructive interference occurs with respect to emission photons or excitation photons or both at the attachment surface. When analyte domains have a three-dimensional structure such that a significant fraction of their volume extends at least ¼ wavelength above the attachment surface provided by the dielectric, substantial constructive signal amplification can take place of signals generated within the analyte domains. Destructive interference relating to emissions arising from the plane of attachment surface yields significant reduction in spurious background emissions.
Owner:BIOCEPT INC

Full-automatic biological chips detection system

The invention discloses a full automatic biochip detection system belonging to the clinical detection field of multi-marker biochips. The system adopts modular structure and comprises an automatic sample processing module, a reaction washing module, a detection module, a Tip head storage module, a reagent storage module, a biochip storage module, a sample storage module, a system base, an electric control box and a computer, the electric control box and all the modules are operated under the control of software, so as to realize the automatic sampling, the sample adding, the reaction, the washing, the detection and other processes. All the modules can work independently and can also be combined together and matched for work. The full automatic biochip detection system can overcome the shortcomings of the existing biochip detector and reduce the errors caused by human operation, and has stable and reliable detection result and good flexibility, so that the full automatic biochip detection system can not only greatly improve the detection efficiency, but also can be conductive to the accuracy of the detection result; the system has simple operation, therefore, the system is not only applicable to the scientific research and the applications of laboratories and hospitals, but also can be used for large-scale sample screening of large-scale hospitals and blood stations.
Owner:上海裕隆生物科技有限公司

Integrated multipelx target analysis

This invention provides biochip cartridges and instrument devices for the detection and / or analysis of target analytes from patient samples.
Owner:ROCHE MOLECULAR SYST INC

Disposable multi-layered filtration device for the separation of blood plasma

Provided is a disposable multi-layered filtration device for the separation of blood plasma which can be applied to a biochip and appropriate for disposal uses. The filtration device for the separation of blood plasma includes: an upper substrate including a blood inlet; an intermediate substrate including a filtering unit for extracting blood plasma from blood flowing through the blood inlet; and a lower substrate including an air outlet, wherein the upper substrate, the intermediate substrate, and the lower substrate are stacked and adhered.
Owner:ELECTRONICS & TELECOMM RES INST

Probe biochips and methods for use thereof

The invention relates to fields of use of unlabelled polynucleotide probes able to form hairpins, the biochips comprising such probes and methods allowing use thereof. The present invention also concerns methods for designing such probes and biochips. More particularly, the invention concerns the use of such unlabelled probes and biochips for manipulating and analysing polynucleotide sequences and optionally molecules which are associated therewith. This invention further concerns methods for preparing and use such probes and biochips for analysing mutations, sequencing, detection of alternative splicing variants, gene expression analysis, analysis of allelic imbalances and loss of heterozygosity and the detection of any nucleic acid present in organisms or residues from said organisms.
Owner:GENEWAVE SAS

Three dimensional format biochips

A biochip is formed with a plurality of optically clear hydrogel cells attached to the top surface of a solid substrate in the form of an array. Each of the cells is formed of a hydrogel of polyethylene glycol, polypropylene glycol or a copolymer thereof having reactive isocyanate groups. Binding entities are immobilized in these cells, which entities are effective to selectively hybridize to or sequester a target biomolecule. Different binding entities are immobilized in different cells in an array to create a biochip that can be used to assay for a number of target biomolecules.
Owner:BIOCEPT INC

Microarray detector and methods

A detector for optical analysis of a biochip determines the focal position of a plurality of analytes on the biochip using one or more registration markers on the biochip, wherein the analytes and the registration marker are illuminated by different light sources. Therefore, contemplated configurations will significantly reduce overall focusing time and automate proper positioning of the biochip, while allowing to determine a focal position without photobleaching or other undesirable effects on optically labile compounds. Thus, automated analyses can be performed without manual user intervention.
Owner:AUTOGENOMICS

Method for fabricating a biochip using the high density carbon nanotube film or pattern

The present invention relates to a CNT-biochip comprising a bio-receptor which is attached by means of an exposed chemical functional group on a surface of a high density CNT film or pattern which is produced by laminating repeatedly carbon nanotubes (CNT) by chemical bond on the substrate modified with amine groups, and a method for fabricating the same. According to the present invention, it is possible to fabricate various types of CNT-biochips by chemical or physicochemical bonding of various bio-receptors to a CNT pattern (or film) containing exposed carboxyl groups or a CNT pattern (or film) modified by various chemical functional groups. Also, it is possible to fabricate a CNT-biochip comprising bio-receptors attached evenly with high density on a surface of a CNT film where chemical functional groups are abundant and present evenly. Further, the CNT-biochip is applicable to next generation biochips which measure an electrical or electrochemical signal using both conductor and semiconductor properties of the CNT, thereby not needing labeling. Particularly, upon fluorescent measurement of DNA hybridization using the CNT-DNA chip according to the present invention, it is possible to show more distinct signals, thereby producing excellent results. The CNT-DNA chip is useful for genotyping, mutation detection, pathogen identification and the like.
Owner:KOREA ADVANCED INST OF SCI & TECH

Spotting Device and Method for High Concentration Spot Deposition on Microarrays and Other Micorscale Devices

ActiveUS20070231458A1Facilitate surface depositionDecrease binding efficiencyMaterial nanotechnologySequential/parallel process reactionsHigh concentrationCompound (substance)
Disclosed is a spotter device and methods for the formation of microassays, biochips, biosensors, and cell cultures. The spotter may be used to deposit highly concentrated spots of protein or other materials on a microarray a slide, wafer, or other substrate. The spotter uses microfluidic conduits and orifices to deposit proteins, other biomolecules, or chemicals on a spot on a substrate. Each orifice is part of a fluid pathways that includes an inlet and outlet conduit. When the spotter contacts a substrate a seal is formed between the orifices and the substrate.
Owner:UNIV OF UTAH RES FOUND

Microwell biochip

Microwell biochips (11) are formed from a thin flat plate (13) of polymeric material having a plurality of regularly spaced holes (15) that extend completely therethrough and create microwells. The lower end of each hole is closed by a microporous, hydrophobic, polymeric membrane (17) laminated to the undersurface of the plate which retains an aqueous test solution in the wells until a vacuum is applied to the undersurface thereof to effect draining of the solution and of any wash solution that might be subsequently added. A spot of polymerizing isocyanate-functional hydrogel is applied generally centrally to the porous membrane surface at the bottom of each well in a manner so as to cover only a minor portion of the surface and out of contact with the well sidewalls, thus leaving substantial surface area through which drainage can be readily effected. Biological capture agents are associated with the polymerizing hydrogel so as to become immobilized as a part thereof.
Owner:BIOCEPT INC

Interactive transparent individual cells biochip processor

An Interactive Transparent Individual Cells Biochip Processor (ITICBP) device is described, which is useful for assessing a single, individual living cell at identifiable location or assessing group of cells each at identifiable location.
Owner:BAR ILAN UNIV

High-density ion transport measurement biochip devices and methods

The present invention provides novel biochips, biochip-based devices, and device configurations that can be used for ion transport measurement. The chips, devices, and designs of the present invention are particularly suited to high-throughput assays such as compound screening assays using patch clamping techniques. The invention includes high-density biochips made by novel methods and methods of making high density biochips, and also provides novel upper chamber configurations and fluidics designs for upper chambers of ion transport measurement devices that can be used in high throughput patch clamp assays. The present invention also includes methods of using ion transport measuring chips and devices of the present invention.
Owner:AVIVA BIOSCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products