Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

313 results about "Technetium" patented technology

Technetium is a chemical element with the symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive; none are stable, excluding the fully ionized state of ⁹⁷Tc. Nearly all technetium is produced as a synthetic element, and only about 18,000 tons can be found at any given time in the Earth's crust. Naturally occurring technetium is a spontaneous fission product in uranium ore and thorium ore, the most common source, or the product of neutron capture in molybdenum ores. This silvery gray, crystalline transition metal lies between manganese and rhenium in group 7 of the periodic table, and its chemical properties are intermediate between those of these two adjacent elements. The most common naturally occurring isotope is ⁹⁹Tc.

Assembly for transmutation of a long-lived radioactive material

A new transmutation assembly permits an efficient transmutation of a long-lived radioactive material (long-lived FP nuclides such as technetium-99 or iodine-129) which was produced in the nuclear reactor. Wire-type members of a long-lived radioactive material comprised of metals, alloys or compounds including long-lived FP nuclides are surrounded by a moderator material and installed in cladding tubes to form FP pins. The FP pins, and nothing else, are housed in a wrapper tube to form a transmutation assembly. The wire-type members can be replaced by thin ring-type members. The transmutation assemblies can be selectively and at least partly loaded into a core region, a blanket region or a shield region of a reactor core in a fast reactor. From a viewpoint of reducing the influence on the reactor core characteristics, it is optimal to load the transmutation assemblies into the blanket region.
Owner:JAPAN ATOMIC ENERGY AGENCY INDEPENDANT ADMINISTRATIVE CORP

Well Plate

The present invention includes an apparatus for preparing samples for measurement by x-ray fluorescence spectrometry. The apparatus comprises a plate having one or more holes passing through the plate. The holes are covered by a film on one side of the plate. The holes are less than 500 micrometers across in one dimension where the film covers the holes. The film is translucent to x-rays. The present invention also includes an apparatus for preparing samples for measurement by x-ray fluorescence spectrometry. The apparatus comprises a plate having one or more holes passing through the plate. The holes are covered on one side of the plate by a detachable cover forming a water-tight seal against the plate. The cover is substantially free of the elements osmium, yttrium, iridium, phosphorus, zirconium, platinum, gold, niobium, mercury, thallium, molybdenum, sulfur, lead, bismuth, technetium, ruthenium, chlorine, rhodium, palladium, argon, silver, and thorium. The holes are less than about 500 micrometers across in one dimension where the cover covers the holes. The present invention also includes a method for preparing samples for measurement by x-ray fluorescence spectrometry. The method comprises providing a solution of with less than 10 micromolar solute and a volume of between about 2 microliters and about 2 milliliters. The solution is concentrated and analyzed using x-ray fluorescence spectrometry.
Owner:ICAGEN LLC

Well plate

The present invention includes an apparatus for preparing samples for measurement by x-ray fluorescence spectrometry. The apparatus comprises a plate having one or more holes passing through the plate. The holes are covered by a film on one side of the plate. The holes are less than 500 micrometers across in one dimension where the film covers the holes. The film is translucent to x-rays. The present invention also includes an apparatus for preparing samples for measurement by x-ray fluorescence spectrometry. The apparatus comprises a plate having one or more holes passing through the plate. The holes are covered on one side of the plate by a detachable cover forming a water-tight seal against the plate. The cover is substantially free of the elements osmium, yttrium, iridium, phosphorus, zirconium, platinum, gold, niobium, mercury, thallium, molybdenum, sulfur, lead, bismuth, technetium, ruthenium, chlorine, rhodium, palladium, argon, silver, and thorium. The holes are less than about 500 micrometers across in one dimension where the cover covers the holes. The present invention also includes a method for preparing samples for measurement by x-ray fluorescence spectrometry. The method comprises providing a solution of with less than 10 micromolar solute and a volume of between about 2 microliters and about 2 milliliters. The solution is concentrated and analyzed using x-ray fluorescence spectrometry.
Owner:ICAGEN LLC

Low-temperature solidification of radioactive and hazardous wastes

Treatment of a radioactive waste stream is provided by adding sodium hydroxide (NaOH) and / or potassium hydroxide (KOH) together with a rapidly dissolving form of silica, e.g., fumed silica or fly ash. Alternatively, the fumed silica can be first dissolved in a NaOH / KOH solution, which is then combined with the waste solution. Adding a binder that can be a mixture of metakaolin (Al2O3.2SiO2), ground blast furnace slag, fly ash, or other additives. Adding an “enhancer” that can be composed of a group of additives that are used to further enhance the immobilization of heavy metals and key radionuclides such as 99Tc and 129I. An additional step can involve simple mixing of the binder with the activator and enhancer, which can occur in the final waste form container, or in a mixing vessel prior to pumping into the final waste form container, depending on the particular application.
Owner:P&T GLOBAL SOLUTIONS

PUREX process for separating technetium

ActiveCN103325431AStep-by-step restore implementationGo simpleRadioactive decontaminationTechnetiumSalt free
The invention relates to a PUREX process for separating technetium. The PUREX process includes the steps: (1) co-decontamination and co-extraction: co-extracting uranium, plutonium, neptunium and the technetium in spent fuel nitric acid solution into an organic phase and washing co-extraction liquid; (2) plutonium and neptunium reverse extraction: reversely extracting the plutonium and the neptunium in the co-extraction liquid into a water phase by reverse extraction agents S1 containing AHA and then adding uranium supplement extraction agents for supplement extraction to obtain the water phase containing the plutonium and the neptunium and an oil phase containing the uranium and the technetium; (3) technetium reduction and reverse extraction: reducing and reversely extracting the technetium in the oil phase containing the uranium and the technetium into the water phase by reverse extraction agents S2 containing reducing agents and then adding uranium supplement extraction agents for supplement extraction to obtain a water phase containing the technetium and an oil phase containing the uranium, wherein the oil phase containing the uranium enters a subsequent uranium purification process. The neptunium, the plutonium and the technetium are reduced step by step through a step-by-step reduction method, the technetium can be separated out, the trend of elements is simpler and more uniform, all the reducing agents are salt-free reagents, remaining reagents are easily damaged, and the subsequent process is less affected.
Owner:CHINA INSTITUTE OF ATOMIC ENERGY

Electrode composition for removing nitrogen oxides, and apparatus and method thereof

The invention relates to an electrode composition for removing nitrogen oxides, and an apparatus and a method thereof. The electrode composition for removing nitrogen oxides comprises a catalysis material and an adsorption material, wherein the adsorption material is a perovskite material with the chemical formula of AaBbO3-delta, wherein a is greater than 0.9 and not greater than 1.2, b is greater than 0.9 and not greater than 1.2, and delta is greater than -0.5 and lower than 0.5; A comprises a first element and a selectable second element, the first element is selected from calcium, strontium, barium, lithium, sodium, potassium, rubidium and an arbitrary combination thereof, and the second element is selected from yttrium, bismuth, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and an arbitrary combination thereof; and B is selected from silver, gold, cadmium, cerium, cobalt, chromium, copper, dysprosium, erbium, europium, iron, gallium, gadolinium, hafnium, holmium, indium, iridium, lanthanum, lutetium, manganese, molybdenum, niobium, neodymium, nickel, osmium, palladium, promethium, praseodymium, platinum, rhenium, rhodium, ruthenium, antimony, scandium, samarium, tin, tantalum, terbium, technetium, titanium, thulium, vanadium, tungsten, yttrium, ytterbium, zinc, zirconium, and an arbitrary combination thereof. The invention also relates to a corresponding apparatus and a corresponding method.
Owner:GENERAL ELECTRIC CO

Developing apparatus and electrostatic recording apparatus using the same

A developing apparatus characterized in being constituted to satisfy Equation (1) shown below when an amount of a developer carried by 1 pitch of a carrying member of an auger or the like is designated by notation W(g), a toner amount supplied by 1 pitch during a time period in which the developer carried by 1 pitch passes a supply region of a toner supply roller is designated by notation M(g), a toner concentration of the developer detected by a toner concentration sensor is designated by notation Tc (%), and a mixing limit toner concentration is designated by notation Tmax (%). (W×(Tc / 100)+M) / (W+M)≦Tmax / 100   (1)
Owner:RICOH PRINTING SYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products