Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

776 results about "Carbon alloy" patented technology

Pure carbon isotropic alloy of allotropic forms of carbon including single-walled carbon nanotubes and diamond-like carbon

InactiveUS7097906B2Enhance particular propertyNot add to structural performanceMaterial nanotechnologyLayered productsCarbon alloyCarbon nanotube
An isotropic carbon alloy is formed from various carbon allotropes such as SWCNT, fullerenes, MWCNT, diamond-like carbon, diamond, nanocrystalline diamond, diamondoids, amorphous carbon, graphitic polyhedral crystals, graphite, graphene, HOPG, and hydrogenated amorphous carbon. The SWCNTs are present in different morphologies such as ropes, bundles, single filaments, tangled webs, etc. The SWCNT have large aspect ratios and weave throughout the alloy. Many morphologies of ICA are possible with a range of properties attainable as a function of the composition of carbon allotropes and post-processing techniques. Post-processing can be done to enhance particular properties of the ICA and may include HIP, furnace heating, ion beam irradiation, electron beam irradiation, laser irradiation, electric resistive heating, inductive heating, IR irradiation, etc. Contaminants may be present in the ICA as a consequence of the process equipment, process feedstock, or catalysts used in the reactors.
Owner:LOCKHEED MARTIN CORP

Low-temperature high-strength, high-toughness steel and preparing method therefor

The invention relates to a low-temperature, high-intensity, high-toughness steel and the making method thereof, applicable to the environment down to -60 deg.C, adopting low-carbon Cr-Ni-Si-Mn-Mo-V alloy, and its chemical composition includes in mass percent (mass%): C: 0.16-0.24,Si:1.0-1.4, Mn:1.10-1.50,Cr:0.80-1.20,Ni:1.00- 1.40,Mo:0.20-0.40,V:0.05-0.20,S=<0.035,P=<0.035,Cu =<0.050, and the rest Fe. And its making method comprises: (1) smelting; (2) forging: heating at 1280-1320deg.C, where initial forging temperature: 1100-1250deg.C, final forging temperature >=850deg.C; annealing after forging, where heating temperature: 700+-30deg.C, and tapping temperature =<300deg.C; (3) thermal treatment: normalizing: air cooling at 930-950deg.C; tempering: air cooling at 790-720deg.C; quenching: oil cooling at 900-930deg.C; and tempering: air cooling at 200-260deg.C; (4) supersonic crack detection and magnetic particle crack detection. And it is especially applied to the materials for flying rings, hocks, pin shafts, etc, in the lifting systems of mechanical facilities.
Owner:RG PETRO MACHINERY GROUP

Bioabsorbable medical device

An implantable medical device is provided that degrades upon contact with body fluids so as to limit its residence time within the body. The device is formed of an iron carbon alloy that is subjected to DET heat treatment to impart high strength and high ductility in combination with an accelerated corrosion rate.
Owner:ABBOTT CARDIOVASCULAR

Lithium ion battery electrolyte and high-energy-density lithium ion battery using same

The invention provides a lithium ion battery electrolyte and a high-energy-density lithium ion battery using the same. The lithium ion battery electrolyte comprises a non-aqueous organic solvent, a lithium salt and additives. The additives comprise a negative electrode film-forming additive, a nitrile or ether nitrile compound, an acid anhydride compound and a lithium salt type additive. Accordingto the lithium ion battery electrolyte, 0.3-20wt% of the negative electrode film-forming additive such as vinylene carbonate and/or fluorocarbonate can form an excellent SEI film on a carbon-containing negative electrode, a silicon-containing negative electrode or a silicon carbon alloy negative electrode and the like, thereby stabilizing the negative electrode and ensuring excellent battery performance; 0.2-6.5wt% of the nitrile or ether nitrile compound, the acid anhydride compound and a combination of them can complex metal ions of a positive electrode or form a protective film on the surface of the positive electrode, thereby stabilizing the positive electrode and improving battery performance; and the 0.5-3 wt% of the lithium salt type additive in the lithium ion battery electrolytecan lower the impedance of the battery so as to improve the low temperature performance of the battery or improve the high temperature performance of the battery.
Owner:ZHUHAI COSMX BATTERY CO LTD

Online softening rolling method for medium carbon alloy cold forging steel

An in-line softening and rolling technology for the cold-foraged medium-carbon alloy steel features use of high-speed wire rolling mill and includes such steps as heating billet to 950-1180 deg.C, primary, medium and pre-fine rollings, cooling to 700-820 deg.C by water tank, fine rolling, water cooling to 680-780 deg.C, discharging wire, cooling at the cooling speed of 0.01-0.5 deg.C / S for 600-2400 S, and natural cooling. Its advantages are high speed and product quality and saving energy.
Owner:MAANSHAN IRON & STEEL CO LTD

Silicon-carbon alloy cathode material used in lithium ion battery, and preparation method thereof

The invention discloses a silicon-carbon alloy cathode material used in a lithium ion battery, and a preparation method thereof. The invention aims at improving the cycling performance of the silicon-carbon alloy cathode material. According to the silicon-carbon alloy cathode material, silicon powder particles with particle sizes of 20-250nm are adopted as substrates; carbon nano-tubes and amorphous carbon are coated on the surfaces of the substrates; the thicknesses of the carbon nano-tubes and amorphous carbon are 100-300nm; the carbon nano-tubes and amorphous carbon are short-strip-shaped, block-shaped, or layered hollow-structured cracked carbon. The preparation method provided by the invention comprises steps of: slurry preparing, drying and powder preparing, calcining, and chemical vapor depositing. Compared to prior arts, the silicon-carbon alloy cathode material is advantaged in high specific capacity, good cycling performance, a capacity greater than 1000mAh/g, and a capacity maintenance rate above 90% with 20 times of circulation. The preparation method provided by the invention is advantaged in simple technology and low raw material cost. The material and the method provided by the invention are suitable for various high-capacity lithium ion battery cathode materials.
Owner:BTR NEW MATERIAL GRP CO LTD

Method for clearly displaying low carbon low alloy steel austenite crystal

The invention relates to a method for clearly displaying lower carbon and low alloy steel austenite crystal, which belongs to the technical field of physical detection. The method is used to solve the problem that lower carbon and low alloy steel can not clearly display the austenite crystal thereof. The method comprises a quenching process and a corrosion process, which is characterized in that the proportion of corrosive agent in the process of corroding is that CrO3 8g-10g, NaOH 40g-50g, picric acid 1.6g-2g, epoxyethane 2ml-4ml and distilled water 80ml-100ml. The method adopts specific corrosive agent and is matched with a correct corrosion method, which can clearly display austenite grain boundary. The method fills a gap of low carbon alloy steel austenite grain boundary display technology, which provides an important theoretical basis for a manufacturing enterprise to research the influence of technological parameters to microstructure evolution when the steel is deforming, and plays an important function for producing low carbon alloy steel, reasonably controlling technological parameters and guaranteeing the property of products.
Owner:NORTH CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Passivation contact electrode structure and applicable solar cell and manufacturing method thereof

The invention discloses a passivation contact electrode structure and an applicable solar cell and a manufacturing method thereof. The electrode structure comprises a doped semiconductor layer and a copper electrode, wherein the doped semiconductor layer is deposited on a crystalline silicon substrate, the copper electrode is arranged on the doped semiconductor layer, the doped semiconductor is any one of polycrystalline silicon, microcrystalline silicon or microcrystalline silicon carbon alloy, and the thickness of the doped semiconductor is 5 to 100 nm. In an implementation process, the applicable solar cell is arranged on the back side or the two sides of the crystalline silicon substrate and comprises the passivation contact electrode structure. The invention further discloses a manufacturing of the solar cell with the passivation contact electrode structure. According to the passivation contact electrode structure disclosed by the invention, a surface composite efficiency of photo-induced carriers is reduced by passivating contact among all the metal electrodes, and a more complete passivation effect is achieved; meanwhile, compared with an existing technological method, massproduction of the passivation contact electrode structure disclosed by the invention is achieved; furthermore, electroplated copper is utilized as a conducting layer to replace silver, so that cell production cost is reduced.
Owner:SUZHOU SUNWELL NEW ENERGY CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products