Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1856 results about "Alloy composite" patented technology

A composite is, much like an alloy, a combination of at least two or more components. However, while an alloy always contains a metal in it, a composite does not have any metal included in its mixture.

Hybrid cemented carbide composites

Embodiments of the present invention include hybrid composite materials comprising a cemented carbide dispersed phase and a cemented carbide continuous phase. The contiguity ratio of the dispersed phase of embodiments may be less than or equal to 0.48. The hybrid composite material may have a hardness of the dispersed phase that is greater than the hardness of the continuous phase. For example, in certain embodiments of the hybrid composite material, the hardness of the dispersed phase is greater than or equal to 88 HRA and less than or equal to 95 HRA and the hardness of the continuous phase is greater than or equal to 78 and less than or equal to 91 HRA. Additional embodiments may include hybrid composite materials comprising a first cemented carbide dispersed phase wherein the volume fraction of the dispersed phase is less than 50 volume percent and a second cemented carbide continuous phase, wherein the contiguity ratio of the dispersed phase is less than or equal to 1.5 times the volume fraction of the dispersed phase in the composite material. The present invention also includes a method of making a hybrid cemented carbide composite by blending partially and / or fully sintered granules of the dispersed cemented carbide grade with “green” and / or unsintered granules of the continuous cemented carbide grade to provide a blend. The blend may then be consolidated to form a compact. Finally, the compact may be sintered to form a hybrid cemented carbide.
Owner:KENNAMETAL INC

Hybrid cemented carbide composites

Embodiments of the present invention include hybrid composite materials comprising a cemented carbide dispersed phase and a cemented carbide continuous phase. The contiguity ratio of the dispersed phase of embodiments may be less than or equal to 0.48. The hybrid composite material may have a hardness of the dispersed phase that is greater than the hardness of the continuous phase. For example, in certain embodiments of the hybrid composite material, the hardness of the dispersed phase is greater than or equal to 88 HRA and less than or equal to 95 HRA and the hardness of the continuous phase is greater than or equal to 78 and less than or equal to 91 HRA.Additional embodiments may include hybrid composite materials comprising a first cemented carbide dispersed phase wherein the volume fraction of the dispersed phase is less than 50 volume percent and a second cemented carbide continuous phase, wherein the contiguity ratio of the dispersed phase is less than or equal to 1.5 times the volume fraction of the dispersed phase in the composite material.The present invention also includes a method of making a hybrid cemented carbide composite by blending partially and / or fully sintered granules of the dispersed cemented carbide grade with “green” and / or unsintered granules of the continuous cemented carbide grade to provide a blend. The blend may then be consolidated to form a compact. Finally, the compact may be sintered to form a hybrid cemented carbide.
Owner:KENNAMETAL INC

High-entropy alloy-base composite material and preparation method thereof

The invention provides a high-entropy alloy based composite material and a method for preparation, which relates to an alloy composite material and a method for preparation. The invention provides the high-entropy alloy based composite material and a method for preparation, and a composite material whose comprehensive performance is better than high-entropy alloy. The high-entropy alloy based composite material is made from 1-45 percent of reinforced phase and 55-99 percent of high-entropy alloy base according to the volume percentage. The high-entropy alloy based composite material is prepared by an in-situ spontaneity method or a non- in-situ spontaneity method, and the reinforced phase is prepared in an original position in the high-entropy alloy base or is added from the outer portion. The invention further improves the mechanical properties of materials basing on original high-entropy alloy, and is capable of playing the potentiality of the high-entropy alloy base in maximum limit. The high-entropy alloy based composite material of the invention is capable of being used by various preparation processes, the operation is easy and is easy to operate.
Owner:HARBIN INST OF TECH

Method for composite preparation of Ti alloy/TiAl alloy composite plate material by using laminated rolling-diffusion method

The invention discloses a making method of titanium alloy / TiAl composite board, which is characterized by the following: overlapping A (titanium foil) and C (aluminium foil); placing at least one layer B (titanium or titanium alloy foil, titanium or titanium alloy board) on the upper and lower surfaces of overlapped layer or among overlapping layer; setting adjacent layer C to B; adopting three layers or more of A or B as the most outer layer; jacketing; rolling under 20-750 deg.c and 750-1300 deg.c.
Owner:HARBIN INST OF TECH

Powder metallurgy preparation method of carbon nanotube reinforced aluminum alloy composite material

ActiveCN103789564ARapid precipitation strengtheningReliable and efficient processMicro nanoThermal deformation
The invention provides a powder metallurgy preparation method of a carbon nanotube reinforced aluminum alloy composite material. The method comprises the following steps: pre-preparing micro-nano flake powder of an alloying component, subsequently ball-milling the powder with a carbon nanotube and spherical pure aluminum powder to prepare flake composite powder, and further performing densifying, sintering, thermal deformation processing and thermal treatment to achieve alloying so as to finally obtain the carbon nanotube reinforced aluminum alloy composite material. Uniform compounding of the matrix aluminum powder, the carbon nanotube and the alloying component can be achieved through limited ball-milling, and meanwhile dangerous elements or uneasy grinding elements such as magnesium and silicon which are high in activity and likely to combust and explode are avoided by adopting the stable and easily ground pre-alloying aluminum powder, so that the security and the reliability are improved; in addition, because of large interlayer boundary and small layer thickness distance, the flake structure is beneficial for uniformly dispersing the alloying component and forming refined dispersed separated phase. The method is beneficial for bringing the effects of composite reinforcement of carbon nanotubes and alloy reinforcement into play to the maximum extent, is energy-saving and time-saving, and is safe and feasible.
Owner:SHANGHAI JIAO TONG UNIV

Road vehicle brake disc made of carborundum foamed ceramics/aluminum alloy composite materials and production method of road vehicle brake disc

The invention discloses a road vehicle brake disc made of carborundum foamed ceramics/aluminum alloy composite materials and a production method of the road vehicle brake disc. The body of the reinforced-aluminum-alloy brake disc with a carborundum foamed ceramics framework is made of reinforced aluminum alloy materials such as aluminum alloy or nano ceramics particles or carbon nano-tubes. The carborundum foamed ceramics framework is integrally casted on two symmetrical friction surfaces of the brake disc, and heat dissipation grooves or air holes can be casted or do not need to be casted on the friction surfaces. A plurality of heat dissipation ribs are casted in the peripheral direction of non-friction surfaces. Mounting holes are formed in the disc body. The production method includes the steps of production of the carborundum foamed ceramics framework, preprocessing of the framework, design and production of a casting mold of the brake disc, lower-pressure casting of the brake disc, heat treatment of the brake disc, precision processing of the brake disc and storage of a finished product. The brake disc is simple in production technology, light in weight, high and stable in friction factor, high in heat conductivity, long in service life and applicable to existing road vehicles.
Owner:SHIJIAZHUANG DONGDA HUITONG NEW MATERIAL CO LTD

Method and device for preparing working layer of metallurgical hot roll by laser direct deposition

The invention discloses a method and a device for preparing a working layer of a metallurgical hot roll by laser direct deposition, which belong to the field of the application of laser technology. The method is characterized in that high speed steel-like powder and Co-based alloy composite powder are used as the materials for the working layer of the roll. Concretely, the method comprises: filling high speed steel-like powder or mechanically mixed powder which uses Co-based alloy and the like as a substrate material and is added with reinforcing and toughening submicron grains with different amounts into a powder supply system; and performing laser-assisted direct metal deposition on the surface of a roll core, of which the travel is controlled by a worktable, with synchronous powder supply to manufacture the working layer of the roll. A deposition method adopts an alternate deposition mode. The corresponding deposition thickness is determined according to the requirements on the thickness of the working layer. The hard phase content of the powder, in which the Co-based alloy is added as a hard phase, is increased layer by layer so as to form a gradient deposited layer. In the method, the reinforced, toughened and wear-resistance working layer is prepared on the surface of a cheap hot roll core part material by laser-assisted metal direct deposition technology under specific process conditions.
Owner:JIANGSU UNIV

Method for preparing nucleocapsid structure lithium ion battery alloy composite cathode material

The invention relates to a method for preparing a nuclear shell structured alloy composite anode material of lithium ion battery through a sponging drying-carbon thermal reduction method, and belongs to the materials science technique field. The method comprises the following procedures: weighing nanometer oxide and an organic macromolecule polymer used for preparing the alloy composite material according to stoichiometric proportion; adding solvent to prepare a solution with certain concentration; carrying out a spray drying process on the solution; and calcining the obtained power at certain temperature, thus obtaining a spherical nuclear shell structured alloy composite anode material of lithium ion battery. The method for preparing a nuclear shell structured alloy composite anode material of lithium ion battery has the advantages of preparing the products with good electrochemical property, low preparation cost and simple technology, and can be directly used in the mass industrial production of the alloy composite anode material of lithium ion battery.
Owner:TSINGHUA UNIV

Manufacturing method of detachable ceramic alloy composite grinding roller

The invention discloses a manufacturing method of a detachable ceramic alloy composite grinding roller. The manufacturing method comprises the following steps: firstly, uniformly mixing ceramic particles and low-melting-point alloy powder by binders so as to obtain a mixture; stuffing the mixture in a mold cavity, and forming the mixture into a biscuit; putting the biscuit together with a mold into a drying cabinet, and drying and sintering the biscuit to obtain a ceramic precast part; and taking out the sintered ceramic precast part, fixing the taken ceramic precast part on the surface of a roller skin liner casting mold cavity, casting abrasion-proof alloying metal liquid to obtain a roller skin liner of which the surface presents metallurgical bond by the ceramic precast part and an abrasion-proof alloy material, and finally fixing the roller skin liner on the surface of a roller core. According to the manufacturing method of the detachable ceramic alloy composite grinding roller disclosed by the invention, the roller skin liner is small in size and light in weight, the casting quality and the heat treatment technology are easy to control, and the qualified rate of finished products is high; the surface of the roller skin liner is composited by the high abrasion-proof ceramic precast part and an abrasion-proof alloy, so that the surface of the roller skin liner has double abrasion-proof properties and the toughness of the metal materials; the end surface of the roller skin liner is fixed by bolts, so that the roller skin liner can be detached on the site, and a new roller skin liner is replaced.
Owner:NANTONG GAOXIN ANTIWEAR MATERIALS TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products