Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

724 results about "Compositing" patented technology

Compositing is the combining of visual elements from separate sources into single images, often to create the illusion that all those elements are parts of the same scene. Live-action shooting for compositing is variously called "chroma key", "blue screen", "green screen" and other names. Today, most, though not all, compositing is achieved through digital image manipulation. Pre-digital compositing techniques, however, go back as far as the trick films of Georges Méliès in the late 19th century, and some are still in use.

Accelerated compositing of fixed position elements on an electronic device

A device, system and method are provided for processing structured documents for display. Content of a first viewable portion of the structured document having a fixed position in relation to a viewport is rendered as first rendered image data. Content of a second viewable portion that does not have a fixed position is rendered as second rendered image data. The first and second rendered image data are composited, and a resultant composited image is output for display. In response to a scroll or zoom command applied to the document, and in particular to the second viewable portion, the second rendered image data is updated and composited with the first rendered image data. Compositing can be carried out by a graphics processor separate from a main processor in the electronic device. When no fixed position elements are present in the structured document, the main processor renders the entire content without compositing.
Owner:BLACKBERRY LTD

Digital camera having system for digital image composition and related method

A digital camera is provided, comprising an image system having a unique combination of features that aid in generating creative, high-quality images. The system presents a variety of overlays, each having prescribed attributes, e.g., ranging in size, opacity, and functionality, and from iconic overlays to full-scale overlays having varied opacity. The overlays can be used as an aid in composing a live image for digital capture, either as a constant or intermittent presence on the view-screen of the camera. In an exemplary embodiment, the camera can create a composite photograph in which a live image and the overlay are combined together. In an independent aspect, the camera can include an auto-compositing feature that aids in creating images free of improperly exposed regions. Thus, a photographer can create and combine images “on location” in a unique manner.
Owner:KELLY DOUGLAS J

Super light-field lens

Light field imaging systems, and in particular light field lenses that can be mated with a variety of conventional cameras (e.g., digital or photographic / film, image and video / movie cameras) to create light field imaging systems. Light field data collected by these light field imaging systems can then be used to produce 2D images, right eye / left eye 3D images, to refocus foreground images and / or background images together or separately (depth of field adjustments), and to move the camera angle, as well as to render and manipulate images using a computer graphics rendering engine and compositing tools.
Owner:PIXAR ANIMATION

Image processing using linear light values and other image processing improvements

Strategies are described for processing image information in a linear form to reduce the amount of artifacts (compared to processing the data in nonlinear form). Exemplary types of processing operations can include, scaling, compositing, alpha-blending, edge detection, and so forth. In a more specific implementation, strategies are described for processing image information that is: a) linear; b) in the RGB color space; c) high precision (e.g., provided by floating point representation); d) progressive; and e) full channel. Other improvements provide strategies for: a) processing image information in a pseudo-linear space to improve processing speed; b) implementing an improved error dispersion technique; c) dynamically calculating and applying filter kernels; d) producing pipeline code in an optimal manner; and e) implementing various processing tasks using novel pixel shader techniques.
Owner:MICROSOFT TECH LICENSING LLC

Method of compiling compositing expressions for optimised rendering

A method of creating an image utilizing a table of levels known as a “level activation table” (34) is disclosed. The method uses the level activation table to optimally evaluate a given compositing expression such that the number of pixel operations needed to evaluate the expression is minimized. The method determines the smallest regions in which compositing operations need to be performed and uses these regions to produce the level activation tables where clipping is applied to operations in order to avoid redundant and / or incorrect pixel operations. The method is preferably used in a compositing model in which objects are composited onto a page using a stack machine and an associated compositing stack (38). The stack 38 may be manipulated using standard stack operations such as push, pull and pop. Instructions for the stack machine are taken from the level activation table 34.
Owner:CANON KK

Plural Focal-Plane Imaging

An imaging system captures focused imagery from two or more focal planes, yet does so with relatively simple optical elements. Some arrangements involve folded optical paths, to make them more compact in size. Others enable the image sensors to be mounted in coplanar arrangement. Still others involve digital compositing, e.g., to mitigate undesired bokeh effects. A great variety of other features and arrangements are also detailed.
Owner:DIGIMARC CORP

Automated microscopic image acquisition, compositing, and display

An automated microscope and computer system captures a set of images for a capture area in a plurality of focal planes. The images can then be integrated into composite images for browsing to simulate viewing an item, such as a biological sample, under a microscope. A corrective filter can be constructed from the images to avoid an effect called “tiling.” Before capture, variable focal plane error can be avoided by collecting z locations for a set of points in the capture area. During image browsing, entire composite images can be loaded into memory in compressed form. Compressed image portions can be pre-decompressed to avoid delay as a browsing user navigates throughout the composite images. Pre-decompression can be done by a thread separate from the thread performing navigation operations.
Owner:DEPT OF HEALTH & HUMAN SERVICES CENT FOR DISEASE CONTROL & PREVENTION US SEC THE +1

Acceleration of rendering of web-based content

Systems and methods for hardware accelerated presentation of web pages on mobile computing devices are presented. A plurality of web pages may be received by a computing device capable of processing and displaying web pages using layout engines, hardware accelerated graphics application programming interfaces (APIs). Upon receipt of the web pages, the web pages may be divided into a plurality of rendering layers, based upon stylesheets of the web pages. An algorithm walks through rendering layers so as to select a plurality of layers that may receive compositing layers so as to take advantage of hardware acceleration when rendered. The web pages may be subsequently presented on a display of the mobile computing devices using remaining rendering layers and compositing layers. In this manner, visual representation of web content remains intact even when content which may not have been originally designed for use with layout engine may be displayed.
Owner:APPLE INC

Camera Projection Meshes

A 3D rendering method is proposed to increase the performance when projecting and compositing multiple images or video sequences from real-world cameras on top of a precise 3D model of the real world. Unlike previous methods that relied on shadow-mapping and that were limited in performance due to the need to re-render the complex scene multiple times per frame, the proposed method uses, for each camera, one Camera Projection Mesh (“CPM”) of fixed and limited complexity per camera. The CPM that surrounds each camera is effectively molded over the surrounding 3D world surfaces or areas visible from the video camera. Rendering and compositing of the CPMs may be entirely performed on the Graphic Processing Unit (“GPU”) using custom shaders for optimal performance. The method also enables improved view-shed analysis and fast visualization of the coverage of multiple cameras.
Owner:FORTEM SOLUTIONS

Automatic compositing of 3D objects in a still frame or series of frames

Systems, methods, and computer program products that provide broadcast-quality photo-realistic rendering of one or more 3D objects added to a still frame (photo mode), or series of frames (movie mode). The basic steps performed during creation of an image include analysis of a 2D image frame during a set up sequence, adding a 3D object to the frame, and adding visual effects to the frame with little or no user intervention, the visual effects including but not limited to shadowing, reflection, refraction, and transparency.
Owner:KOTAB DOMINIC M

System and method for image composition using non-destructive editing model and fast gradient solver

Systems and methods for interactive image compositing may integrate image searching using visual search criteria (e.g., color, composition, tonal distribution, or lighting effects), non-destructive image compositing, and high-performance rendering using a fast gradient solver to provide an efficient workflow for users. An image compositing application, executable by a CPU and / or GPU, may employ a sketch-and-refine approach, whereby a user draws a rough perimeter around an object of interest in an image and (following an initial application of the fast gradient solver to a lower-resolution version of the image) receives a preview of how it would fit into a composition. The fast gradient solver may differentiate between the object and its background by applying artificial intelligence techniques and / or dependent on user-supplied hints. In a second stage, the fast gradient solver may refine the solution for a final rendering of the composite image by operating on successively higher-resolution versions of the image.
Owner:ADOBE INC

Integration of three dimensional scene hierarchy into two dimensional compositing system

A hierarchy of 2D visual objects and 3D scene objects are integrated for seamless processing to render 2D images including a 2D view of a 3D scene on a 2D computer display. The processing of the 3D model objects and 2D visual objects in the visual hierarchy is integrated so that the processing is readily handed off between 3D and 2D operations. Further the number of transitions between processing visual 2D objects and 3D model objects when creating a display image has no architectural limit. A data structure integrates computer program objects for creating 3D images and 2D images in a visual tree object hierarchy having visual 2D objects or 3D scene objects pointing to 3D model objects. The data structure comprises an object tree hierarchy, one or more visual 2D objects, and one or more 3D reference or scene objects pointing to 3D model objects. The visual 2D objects define operations drawing a 2D image. The 3D reference or scene objects define references pointing to objects with operations that together draw a two-dimensional view of a three-dimensional scene made up of one or more 3D models. The 3D reference or scene objects point to 3D model objects and a camera object. The camera object defines a two-dimensional view of the 3D scene. The 3D model objects draw the 3D models and define mesh information used in drawing contours of a model and material information used in drawing surface texture of a model. The material information for the surface texture of a model may be defined by a visual 2D object, a 3D reference or scene object or a tree hierarchy of visual 2D objects and / or 3D reference scene objects.
Owner:MICROSOFT TECH LICENSING LLC

Image compositing method and apparatus

A three-dimensional computer graphics model which represents a measurable range of a position and orientation sensor is prepared in advance. A composite image is generated by superimposing an image of a virtual object which represents the measurable range of the position and orientation sensor on an actually-sensed image in real space where the position and orientation sensor is placed. The composite image, when displayed, makes it possible to visually recognize the measurable range of the position and orientation sensor.
Owner:CANON KK

Media-Editing Application with Media Clips Grouping Capabilities

A media-editing application of some embodiments allows a user of the application to group media clips displayed in the timeline into a single clip representation. A composite display area of the media-editing application often displays numerous clips at various instances in time and at various levels in the compositing hierarchy. To reduce the number of media clips in the timeline, the media-editing application of some embodiments allows the user to select several media clips and combine them into a one media clip representation. In this manner, the media-editing application reduces the congestion in the timeline. These single clip representations are referred to as “compound clips.” Compound clips can be viewed as containers that can include several media clips of the same type in some embodiments, or that can include several media clips of several different types in other embodiments.
Owner:APPLE INC

Digital camera and method for compositing images

The digital camera includes an image pickup unit, an image storing unit, an image display unit, a reference image designating unit with which one or more of at least partial areas of an image to be referenced for image compositing are designated as a reference image area and an image compositing unit which produces a composite image such that a reference image within the reference image area is displayed as superposed on an image being presently photographed. The image processing method attaches first identification information to one or more of at least partial areas of the specified image and designated area information upon photographing, attaches second identification information to an image in an shooting frame to be composited with the reference image and prepares image data for a composite image obtained by compositing the image with the reference image based on the first and second identification information as well as the designated area information.
Owner:FUJIFILM HLDG CORP

Portable electronic devices with integrated image/video compositing

Digital imagery is composed or composited within a smartphone or other portable electronic device to merge foreground and background subject matter acquired simultaneously with different cameras or acquired at different times with the same camera. A processor stores the digital imagery along with information derived or used by an operation to differentiate the foreground subject matter from the background scene, which may be a digital matting operation, and / or may involve finding an edge or an outline of the foreground subject matter. The foreground subject matter and the background scene may be stored as different graphical layers in the memory. A user control such as a touchscreen may enable a user to select and resize or reposition the foreground subject matter on a background scene of a separately acquired image. The digital imagery may constitute a still image or a sequence of images representative of motion video.
Owner:APPLE INC

Video compositing method and device

The embodiment of the invention discloses a video compositing method and device. The video compositing method comprises the steps of receiving a video compositing request of a user; according to the video compositing request, determining media materials required by video compositing, display periods, corresponding to the media materials, in an expected compositing result, render effects corresponding to the media materials, and render periods corresponding to the render effects; according to determining results, generating time domain distribution information used for video compositing, wherein time domain distribution situations of the media materials in the expected compositing result, and time domain distribution situations of the render effects corresponding to the media materials in the expected compositing result are recorded in the distribution information; respectively decoding the media materials, and conducting compositing on decoding results of the medial materials according to the time domain distribution information. Thus, in a video, image and audio compositing process, corresponding effects can be added at the same time, time for video compositing is shortened, and user experience is promoted.
Owner:BEIJING QIYI CENTURY SCI & TECH CO LTD

Method and System for Dynamic, Luminance-Based Color Contrasting in a Region of Interest in a Graphic Image

Foreground images, such as cursors, may be displayed over an image by selecting individual pixel colors to contrast with surrounding background pixels. The background pixels in, around and behind the foreground image may be converted from a red-green-blue (RGB) color space to a luminance isolating color space, such as YUV, HSL or the like. The converted pixel information may be copied, stored, or drawn into a separate compositing window. After converting to the luminance isolating color space, the luminance values of the pixels may be adjusted to increase the contrast between the foreground image and the background image. Portions of the foreground image may also be blurred, such as by applying a Gaussian or box blur, such as to soften the edges. The pixel information may then be converted back into the RGB color space and blended with the background information using alpha information for the foreground and background images.
Owner:ADOBE SYST INC

Image processing apparatus, image processing method, and program

An image processing apparatus includes: a calculating unit configured to calculate motion information relating to between two images that make up an imaged moving picture; and a selecting unit configured to select compositing target images serving as compositing targets from a plurality of images that make up the imaged moving picture based on reliability that indicates the likelihood of the calculated motion information.
Owner:SONY CORP

Digital camera having system for digital image composition and related method

A digital camera is provided, comprising an image system having a unique combination of features that aid in generating creative, high-quality images. The system presents a variety of overlays, each having prescribed attributes, e.g., ranging in size, opacity, and functionality, and from iconic overlays to full-scale overlays having varied opacity. The overlays can be used as an aid in composing a live image for digital capture, either as a constant or intermittent presence on the view-screen of the camera. In an exemplary embodiment, the camera can create a composite photograph in which a live image and the overlay are combined together. In an independent aspect, the camera can include an auto-compositing feature that aids in creating images free of improperly exposed regions. Thus, a photographer can create and combine images “on location” in a unique manner.
Owner:KELLY DOUGLAS J

Automated microscopic image acquisition compositing, and display

An automated microscope and computer system captures a set of images for a capture area in a plurality of focal planes. The images can then be integrated into composite images for browsing to simulate viewing an item, such as a biological sample, under a microscope. A corrective filter can be constructed from the images to avoid an effect called “tiling.” Before capture, variable focal plane error can be avoided by collecting z locations for a set of points in the capture area. During image browsing, entire composite images can be loaded into memory in compressed form. Compressed image portions can be pre-decompressed to avoid delay as a browsing user navigates throughout the composite images. Pre-decompression can be done by a thread separate from the thread performing navigation operations.
Owner:UNITED STATES OF AMERICA

Lithium-sulfur battery cathode material and preparation method thereof

The invention discloses a lithium-sulfur battery cathode material and a preparation method thereof. The cathode material is formed by in-situ compositing of a mesoporous metal-organic framework and elemental sulfur. The mesoporous metal-organic frame is of a laminated pore structure consisting of a macro pore, a meso pore and a micro pore, wherein the pores are communicated with one another. The structure can adsorb more elemental sulfur and can simultaneously inhibit the dissolution of sulfur elementary substance and multi-sulfur compounds in electrolyte, so that the cycle performance of a lithium-sulfur battery is improved and high utilization rate of an active substance of the cathode material is kept. A sulfur and metal-organic framework material composite cathode material is prepared by a two-step process of low-temperature liquid phase composition and sulfur extraction, a composite material precursor with homogeneously dispersed high load sulfur content can be obtained through in-situ compositing at a low temperature with a liquid-phase preparation method, redundant sulfur on the surface of the precursor and in pore passages is extracted by an organic solvent, the aperture of the composite material can be further effectively adjusted and controlled, selective distribution of sulfur is realized, and the composite material with excellent electrochemical performance is obtained. By adopting the preparation method, the distribution of the sulfur in the composite material can be effectively improved, and the electrochemical performance of the composite material is optimized. Meanwhile, the preparation method is simple and is easy to perform industrially, and mass production is facilitated.
Owner:CENT SOUTH UNIV +1

System and method for automatically learning flexible sprites in video layers

ActiveUS7113185B2Simple geometrySimple and efficient to and analyzeImage enhancementImage analysisVideo sequenceVisual perception
A simplified general model and an associated estimation algorithm is provided for modeling visual data such as a video sequence. Specifically, images or frames in a video sequence are represented as collections of flat moving objects that change their appearance and shape over time, and can occlude each other over time. A statistical generative model is defined for generating such visual data where parameters such as appearance bit maps and noise, shape bit-maps and variability in shape, etc., are known. Further, when unknown, these parameters are estimated from visual data without prior pre-processing by using a maximization algorithm. By parameter estimation and inference in the model, visual data is segmented into components which facilitates sophisticated applications in video or image editing, such as, for example, object removal or insertion, tracking and visual surveillance, video browsing, photo organization, video compositing, etc.
Owner:MICROSOFT TECH LICENSING LLC

Automatic compositing of 3D objects in a still frame or series of frames

Systems, methods, and computer program products that provide broadcast-quality photo-realistic rendering of one or more 3D objects added to a still frame (photo mode), or series of frames (movie mode). The basic steps performed during creation of an image include analysis of a 2D image frame during a set up sequence, adding a 3D object to the frame, and adding visual effects to the frame with little or no user intervention, the visual effects including but not limited to shadowing, reflection, refraction, and transparency.
Owner:KOTAB DOMINIC M

System and method for fast on-line learning of transformed hidden Markov models

A fast variational on-line learning technique for training a transformed hidden Markov model. A simplified general model and an associated estimation algorithm is provided for modeling visual data such as a video sequence. Specifically, once the model has been initialized, an expectation-maximization (“EM”) algorithm is used to learn the one or more object class models, so that the video sequence has high marginal probability under the model. In the expectation step (the “E-Step”), the model parameters are assumed to be correct, and for an input image, probabilistic inference is used to fill in the values of the unobserved or hidden variables, e.g., the object class and appearance. In one embodiment of the invention, a Viterbi algorithm and a latent image is employed for this purpose. In the maximization step (the “M-Step”), the model parameters are adjusted using the values of the unobserved variables calculated in the previous E-step. Instead of using batch processing typically used in EM processing, the system and method according to the invention employs an on-line algorithm that passes through the data only once and which introduces new classes as the new data is observed is proposed. By parameter estimation and inference in the model, visual data is segmented into components which facilitates sophisticated applications in video or image editing, such as, for example, object removal or insertion, tracking and visual surveillance, video browsing, photo organization, video compositing, and meta data creation.
Owner:MICROSOFT TECH LICENSING LLC

Transient eutectic phase process for ceramic-metal bonding metallization and compositing

A method for directly joining ceramics (10) and metals (12). The method involves forming a structure having a ceramic component (10), a more refractory metallic component and a less refractory metallic-material-based interlayer (14) disposed between the ceramic component (10) and the metallic component (12); adding a eutectic forming reactant to the metallic interlayer (14); and heating the structure to approximately a eutectic melting temperature of the reactant and the interlayer to form a metallic-material-based eutectic liquid that interacts with the metallic component to form a bond that directly joins the ceramic and metallic components to one another.
Owner:RUTGERS THE STATE UNIV

Method of compositing variable alpha fills supporting group opacity

A method of compositing a plurality of graphic objects with a compositing buffer, is disclosed. The plurality of graphic objects forming a group is attenuated by group opacity and is composited from a top object to a bottom object. Based on a first mask and the group opacity, a second mask is generated. The first mask stores a remaining possible contribution for further graphic objects below and including the plurality of graphic objects. The plurality of graphic objects in a top down order is processed. In particular, for each graphic object of the plurality of graphic objects: (a) a contribution value for the graphic object using the second mask is determined, the contribution value representing a contribution of the graphic object to the compositing buffer; (b) a colour value of the graphic object is composited with the compositing buffer using the contribution value; and (c) the second mask is updated using the contribution value. The first mask is then updated using the second mask and the group opacity. The updated first mask is configured for further compositing of objects below the plurality of graphic objects.
Owner:CANON KK

System and Method for Image Composition Using Non-Destructive Editing Model and Fast Gradient Solver

Systems and methods for interactive image compositing may integrate image searching using visual search criteria (e.g., color, composition, tonal distribution, or lighting effects), non-destructive image compositing, and high-performance rendering using a fast gradient solver to provide an efficient workflow for users. An image compositing application, executable by a CPU and / or GPU, may employ a sketch-and-refine approach, whereby a user draws a rough perimeter around an object of interest in an image and (following an initial application of the fast gradient solver to a lower-resolution version of the image) receives a preview of how it would fit into a composition. The fast gradient solver may differentiate between the object and its background by applying artificial intelligence techniques and / or dependent on user-supplied hints. In a second stage, the fast gradient solver may refine the solution for a final rendering of the composite image by operating on successively higher-resolution versions of the image.
Owner:ADOBE SYST INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products