Conductive catalytic particles which are composed of a conductive powder and a catalytic material adhering to the surface thereof are provided. The catalytic material is an alloy of a noble metal material with an additive material which is thermally solid-insoluble in the noble metal material, or an alloy of MI and MII, where MI denotes at least one species selected from noble metal elements, and MII denotes at least one specifies selected from Fe, Co, Ni, Cr, Al, Cu, Hf, Zr, Ti, V, Nb, Ta, W, Ga, Sn, Ge, Si, Re, Os, Pb, Bi, Sb, Mo, Mn, O, N, C, Zn, In, and rare earth elements. The conductive catalytic particles are produced by causing the noble metal material and the additive material or MI and MII to adhere at the same time to the surface of a conductive powder by physical vapor deposition. The conductive catalytic particles are not susceptible to sintering and are used for a gas-diffusing catalytic electrode and an electrochemical device provided therewith.